001     205104
005     20240313103114.0
024 7 _ |a 10.3389/fninf.2015.00022
|2 doi
024 7 _ |a 2128/9338
|2 Handle
024 7 _ |a WOS:000370609700001
|2 WOS
024 7 _ |a altmetric:4488164
|2 altmetric
024 7 _ |a pmid:26441628
|2 pmid
037 _ _ |a FZJ-2015-05574
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hahne, Jan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations
260 _ _ |a Lausanne
|c 2015
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1570523245_4405
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. We show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|f FP7-ICT-2013-FET-F
|x 2
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|f MSNN
|x 3
536 _ _ |a BTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)
|0 G:(DE-Juel1)BTN-Peta-2008-2012
|c BTN-Peta-2008-2012
|f BTN-Peta-2008-2012
|x 4
536 _ _ |a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)
|0 G:(EU-Grant)269921
|c 269921
|f FP7-ICT-2009-6
|x 5
536 _ _ |a Scalable solvers for linear systems and time-dependent problems (hwu12_20141101)
|0 G:(DE-Juel1)hwu12_20141101
|c hwu12_20141101
|f Scalable solvers for linear systems and time-dependent problems
|x 6
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 7
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 1
700 1 _ |a Kunkel, Susanne
|0 P:(DE-Juel1)151364
|b 2
700 1 _ |a Igarashi, Jun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bolten, Matthias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frommer, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 6
773 _ _ |a 10.3389/fninf.2015.00022
|0 PERI:(DE-600)2452964-3
|n 22
|p 00022
|t Frontiers in computational neuroscience
|v 9
|y 2015
|x 1662-5188
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/205104/files/fninf-09-00022.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:205104
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144806
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151364
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144174
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT COMPUT NEUROSC : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 3
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828
981 _ _ |a I:(DE-Juel1)IAS-6-20130828
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21