000021087 001__ 21087
000021087 005__ 20240610121009.0
000021087 0247_ $$2DOI$$a10.1002/pssa.201100710
000021087 0247_ $$2WOS$$aWOS:000303386900021
000021087 0247_ $$2altmetric$$aaltmetric:1490415
000021087 037__ $$aPreJuSER-21087
000021087 041__ $$aeng
000021087 082__ $$a530
000021087 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000021087 084__ $$2WoS$$aPhysics, Applied
000021087 084__ $$2WoS$$aPhysics, Condensed Matter
000021087 1001_ $$0P:(DE-Juel1)VDB103994$$aAbouzar, M.H.$$b0$$uFZJ
000021087 245__ $$aLabel-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling
000021087 260__ $$aWeinheim$$bWiley-VCH$$c2012
000021087 300__ $$a925 - 934
000021087 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021087 3367_ $$2DataCite$$aOutput Types/Journal article
000021087 3367_ $$00$$2EndNote$$aJournal Article
000021087 3367_ $$2BibTeX$$aARTICLE
000021087 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021087 3367_ $$2DRIVER$$aarticle
000021087 440_0 $$04913$$aPhysica Status Solidi A$$v209$$x0031-8965$$y5
000021087 500__ $$aThe authors thank X. T. Vu and J. Gun for valuable discussions. A. G. Cherstvy gratefully acknowledges the financial support by the Deutsche Forschungsgemeinschaft (DFG Grant CH 707/5-1).
000021087 520__ $$aLabel-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
000021087 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000021087 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x1
000021087 588__ $$aDataset connected to Web of Science
000021087 65320 $$2Author$$aDNA
000021087 65320 $$2Author$$afield-effect
000021087 65320 $$2Author$$agold nanoparticle
000021087 65320 $$2Author$$alabel-free detection
000021087 65320 $$2Author$$ananoplate capacitor
000021087 650_7 $$2WoSType$$aJ
000021087 7001_ $$0P:(DE-Juel1)VDB1267$$aPoghossian, A.$$b1$$uFZJ
000021087 7001_ $$0P:(DE-Juel1)VDB97674$$aCherstvy, A.G.$$b2$$uFZJ
000021087 7001_ $$0P:(DE-Juel1)VDB106554$$aPedraza, A.MN.$$b3$$uFZJ
000021087 7001_ $$0P:(DE-Juel1)VDB5728$$aIngebrandt, S.$$b4$$uFZJ
000021087 7001_ $$0P:(DE-Juel1)128727$$aSchöning, M.J.$$b5$$uFZJ
000021087 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201100710$$gVol. 209, p. 925 - 934$$n5$$p925 - 934$$q209<925 - 934$$tPhysica status solidi / A$$v209$$x0031-8965$$y2012
000021087 8567_ $$uhttp://dx.doi.org/10.1002/pssa.201100710
000021087 909CO $$ooai:juser.fz-juelich.de:21087$$pVDB
000021087 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021087 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021087 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021087 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021087 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021087 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021087 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021087 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021087 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021087 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000021087 9141_ $$y2012
000021087 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000021087 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchl\u00fcsseltechnologien$$lGrundlagen f\u00fcr zuk\u00fcnftige Informationstechnologien$$vSensorics and bioinspired systems
000021087 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000021087 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000021087 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x1
000021087 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000021087 970__ $$aVDB:(DE-Juel1)136923
000021087 980__ $$aVDB
000021087 980__ $$aConvertedRecord
000021087 980__ $$ajournal
000021087 980__ $$aI:(DE-Juel1)ICS-2-20110106
000021087 980__ $$aUNRESTRICTED
000021087 980__ $$aI:(DE-Juel1)PGI-8-20110106
000021087 980__ $$aI:(DE-82)080009_20140620
000021087 981__ $$aI:(DE-Juel1)IBI-5-20200312
000021087 981__ $$aI:(DE-Juel1)IAS-2-20090406
000021087 981__ $$aI:(DE-Juel1)PGI-8-20110106
000021087 981__ $$aI:(DE-Juel1)VDB881