000022140 001__ 22140
000022140 005__ 20180210131514.0
000022140 0247_ $$2pmid$$apmid:22392857
000022140 0247_ $$2DOI$$a10.1088/0953-8984/24/13/135501
000022140 0247_ $$2WOS$$aWOS:000302120100012
000022140 037__ $$aPreJuSER-22140
000022140 041__ $$aeng
000022140 082__ $$a530
000022140 084__ $$2WoS$$aPhysics, Condensed Matter
000022140 1001_ $$0P:(DE-HGF)0$$aDi Napoli, S.$$b0
000022140 245__ $$aModelling impurity-assisted chain creation in noble-metal break junctions
000022140 260__ $$aBristol$$bIOP Publ.$$c2012
000022140 300__ $$a135501
000022140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022140 3367_ $$2DataCite$$aOutput Types/Journal article
000022140 3367_ $$00$$2EndNote$$aJournal Article
000022140 3367_ $$2BibTeX$$aARTICLE
000022140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022140 3367_ $$2DRIVER$$aarticle
000022140 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v24$$x0953-8984$$y13
000022140 500__ $$3POF3_Assignment on 2016-02-29
000022140 500__ $$aThe authors kindly thank Professors J M van Ruitenbek and E Scheer for inspiring and fruitful discussions. YM gratefully acknowledges funding under the HGF-YIG Programme VH-NG-513 and SDN acknowledges funding from Conicet, PIP00258.
000022140 520__ $$aIn this work we present the generalization of the model for chain formation in break junctions, introduced by Thiess et al (2008 Nano Lett. 8 2144), to zigzag transition-metal chains with s and p impurities. We apply this extended model to study the producibility trends for noble-metal chains with impurities, often present in break junction experiments, namely, Cu, Ag and Au chains with H, C, O and N adatoms. Providing the material-specific parameters for our model from systematic full-potential linearized augmented plane-wave first-principles calculations, we find that the presence of such impurities crucially affects the binding properties of the noble-metal chains. We reveal that both the impurity-induced bond strengthening and the formation of zigzag bonds can lead to a significantly enhanced probability for chain formation in break junctions.
000022140 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022140 588__ $$aDataset connected to Web of Science, Pubmed
000022140 650_2 $$2MeSH$$aCarbon: chemistry
000022140 650_2 $$2MeSH$$aCopper: chemistry
000022140 650_2 $$2MeSH$$aGold Alloys: chemistry
000022140 650_2 $$2MeSH$$aHydrogen: chemistry
000022140 650_2 $$2MeSH$$aMaterials Testing
000022140 650_2 $$2MeSH$$aModels, Molecular
000022140 650_2 $$2MeSH$$aNitrogen: chemistry
000022140 650_2 $$2MeSH$$aOxygen: chemistry
000022140 650_2 $$2MeSH$$aSilver: chemistry
000022140 650_7 $$00$$2NLM Chemicals$$aGold Alloys
000022140 650_7 $$01333-74-0$$2NLM Chemicals$$aHydrogen
000022140 650_7 $$07440-22-4$$2NLM Chemicals$$aSilver
000022140 650_7 $$07440-44-0$$2NLM Chemicals$$aCarbon
000022140 650_7 $$07440-50-8$$2NLM Chemicals$$aCopper
000022140 650_7 $$07727-37-9$$2NLM Chemicals$$aNitrogen
000022140 650_7 $$07782-44-7$$2NLM Chemicals$$aOxygen
000022140 650_7 $$2WoSType$$aJ
000022140 7001_ $$0P:(DE-Juel1)VDB78175$$aThiess, A.$$b1$$uFZJ
000022140 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000022140 7001_ $$0P:(DE-Juel1)VDB37182$$aMokrousov, Y.$$b3$$uFZJ
000022140 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/24/13/135501$$gVol. 24, p. 135501$$p135501$$q24<135501$$tJournal of physics / Condensed matter$$v24$$x0953-8984$$y2012
000022140 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/24/13/135501
000022140 909CO $$ooai:juser.fz-juelich.de:22140$$pVDB
000022140 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022140 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022140 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022140 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022140 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022140 9141_ $$y2012
000022140 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022140 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022140 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000022140 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000022140 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000022140 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000022140 970__ $$aVDB:(DE-Juel1)138435
000022140 980__ $$aVDB
000022140 980__ $$aConvertedRecord
000022140 980__ $$ajournal
000022140 980__ $$aI:(DE-Juel1)IAS-1-20090406
000022140 980__ $$aI:(DE-82)080009_20140620
000022140 980__ $$aI:(DE-Juel1)VDB1045
000022140 980__ $$aI:(DE-Juel1)PGI-1-20110106
000022140 980__ $$aUNRESTRICTED
000022140 981__ $$aI:(DE-Juel1)VDB1045
000022140 981__ $$aI:(DE-Juel1)PGI-1-20110106
000022140 981__ $$aI:(DE-Juel1)VDB881