001     22289
005     20180210142749.0
024 7 _ |2 pmid
|a pmid:21962083
024 7 _ |2 DOI
|a 10.1021/ja204624g
024 7 _ |2 WOS
|a WOS:000296678200031
037 _ _ |a PreJuSER-22289
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB106104
|a Kichin, G.
|b 0
|u FZJ
245 _ _ |a Single Molecule and Single Atom Sensors for Atomic Resolution Imaging of Chemically Complex Surfaces
260 _ _ |a Washington, DC
|b American Chemical Society
|c 2011
300 _ _ |a 16847 - 16851
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 21462
|a Journal of the American Chemical Society
|v 133
|x 0002-7863
|y 42
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank M. Sokolowski (Bonn) for helpful discussions. R.T. acknowledges support by the Helmholtz-Gemeinschaft.
520 _ _ |a Individual Xe atoms as well as single CO and CH(4) molecules adsorbed at the tip apex of a scanning tunneling microscope (STM) function as microscopic force sensors that change the tunneling current in response to the forces acting from the surface. An STM equipped with any of these sensors is able to image the short-range Pauli repulsion and thus resolve the inner structure of large organic adsorbate molecules. Differences in the performance of the three studied sensors suggest that the sensor functionality can be tailored by tuning the interaction between the sensor particle and the STM tip.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB85047
|a Weiss, C.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB107972
|a Wagner., C.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F.S.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB73384
|a Temirov, R.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1472210-0
|a 10.1021/ja204624g
|g Vol. 133, p. 16847 - 16851
|n 42
|p 16847 - 16851
|q 133<16847 - 16851
|t Journal of the American Chemical Society
|v 133
|x 0002-7863
|y 2011
856 7 _ |u http://dx.doi.org/10.1021/ja204624g
909 C O |o oai:juser.fz-juelich.de:22289
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|g PGI
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)138752
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21