Journal Article PreJuSER-22889

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Root Water Uptake Dynamics of Cichorium intybus var. sativum Under Water-Limited Conditions

 ;  ;  ;

2012
SSSA Madison, Wis.

Vadose zone journal 11, . () [10.2136/vzj2012.0005]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Chicory (Cichorium intybus L.) is a cash crop cultivated in Western Europe for inulin production. Due to actual and future climate changes, this plant could be exposed to severe water stress at the end of its growing period, leading to a decrease of its yield. The aim of this work was to investigate the chicory root water uptake dynamics and the plant ability to compensate a lack of water in the upper horizons. We performed a controlled experiment with 3 replicates under contrasted irrigation scenarios. We observed that, in case of drought, total root length decreased and root profiles developed deeper. We successfully used a one-dimensional Richards-based model with a stress function and a compensation mechanism (Hydrus 1-D) to inversely characterize the dynamics of the actual sink-term profiles under both irrigation scenarios. We could also use the model to assess the compensation thanks to a weighted stress index that is consistent between replicates. The extraction profiles evolved differently under water-deficit and controlled situations. The passive compensation mechanism allowed chicory roots under water-limited conditions to take water deeper in the soil, where they had only few lateral roots. We found that, in case of drought, compensation started before the plants had to reduce their transpiration rate. Because the soil kept drying out, compensation was not sufficient anymore,and the plants had to decrease their transpiration some days later. However, chicories maintained their metabolism and continued to transpire and to growth slowly. This allowed them to adapt thanks to an active compensation mechanism, by generating new lateral roots in wetter horizons. This study also showed that there was no unique Feddes stress parameter set able to describe plant behavior under contrasted irrigation conditions or even under different plant development stages.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. Terrestrische Umwelt (P24)

Appears in the scientific report 2012
Database coverage:
Medline ; Current Contents - Agriculture, Biology and Environmental Sciences ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2020-07-02



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)