001     23111
005     20250129094328.0
024 7 _ |2 pmid
|a pmid:23087815
024 7 _ |2 pmc
|a pmc:PMC3475993
024 7 _ |2 DOI
|a 10.1038/srep00750
024 7 _ |2 WOS
|a WOS:000310448900004
024 7 _ |2 Handle
|a 2128/7612
024 7 _ |2 altmetric
|a altmetric:1010930
024 7 _ |2 ISSN
|a 2045-2322
037 _ _ |a PreJuSER-23111
041 _ _ |a eng
082 _ _ |a 000
100 1 _ |0 P:(DE-Juel1)144092
|a Li, H.
|b 0
|u FZJ
245 _ _ |a Possible magnetic-polaron-switched positive and negative magnetoresistance in the GdSi single crystals
260 _ _ |a London
|b Nature Publishing Group
|c 2012
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |v .
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Magnetoresistance (MR) has attracted tremendous attention for possible technological applications. Understanding the role of magnetism in manipulating MR may in turn steer the searching for new applicable MR materials. Here we show that antiferromagnetic (AFM) GdSi metal displays an anisotropic positive MR value (PMRV), up to ~415%, accompanied by a large negative thermal volume expansion (NTVE). Around T(N) the PMRV translates to negative, down to ~-10.5%. Their theory-breaking magnetic-field dependencies [PMRV: dominantly linear; negative MR value (NMRV): quadratic] and the unusual NTVE indicate that PMRV is induced by the formation of magnetic polarons in 5d bands, whereas NMRV is possibly due to abated electron-spin scattering resulting from magnetic-field-aligned local 4f spins. Our results may open up a new avenue of searching for giant MR materials by suppressing the AFM transition temperature, opposite the case in manganites, and provide a promising approach to novel magnetic and electric devices.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien (FUEK412)
|c FUEK412
|x 0
536 _ _ |0 G:(DE-HGF)POF2-544
|a 544 - In-house Research with PNI (POF2-544)
|c POF2-544
|f POF II
|x 1
588 _ _ |a Dataset connected to Pubmed
700 1 _ |0 P:(DE-Juel1)131047
|a Xiao, Y.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB1442
|a Schmitz, B.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB97577
|a Perßon, J.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB1436
|a Schmidt, W.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)130836
|a Meuffels, P.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Roth, G.
|b 6
700 1 _ |0 P:(DE-Juel1)130572
|a Brückel, T.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)2615211-3
|a 10.1038/srep00750
|n Art. No.750
|t Scientific Reports
|v 2
|x 2045-2322
|y 2012
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475993
856 4 _ |u https://juser.fz-juelich.de/record/23111/files/FZJ-23111.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/23111/files/FZJ-23111.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/23111/files/FZJ-23111.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/23111/files/FZJ-23111.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:23111
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
913 1 _ |0 G:(DE-HGF)POF2-544
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|3 G:(DE-HGF)POF2
|4 G:(DE-HGF)POF
|a DE-HGF
|b Struktur der Materie
|l Forschung mit Photonen, Neutronen, Ionen
|v In-house Research with PNI
|x 0
914 1 _ |a Sci. Rep. 2, 750; DOI: 10.1038/srep00750 (2012) noch nicht erschienen
|y 2012
915 _ _ |0 LIC:(DE-HGF)CCBYNCSA3
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|g PGI
|k PGI-4
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|g JCNS
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|g PGI
|k PGI-7
|l Elektronische Materialien
|x 3
970 _ _ |a VDB:(DE-Juel1)140036
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21