001     23224
005     20180210123905.0
024 7 _ |2 pmid
|a pmid:21317500
024 7 _ |2 DOI
|a 10.1088/0957-4484/22/12/125704
024 7 _ |2 WOS
|a WOS:000287448200017
037 _ _ |a PreJuSER-23224
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-Juel1)VDB89091
|a Gotschke, T.
|b 0
|u FZJ
245 _ _ |a Properties of uniform diameter InN nanowires obtained under Si doping
260 _ _ |a Bristol
|b IOP Publ.
|c 2011
300 _ _ |a 125704
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4475
|a Nanotechnology
|v 22
|x 0957-4484
|y 12
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors gratefully acknowledge fruitful discussions and suggestions by Professor D Grutzmacher. The authors wish to thank also K H Deussen for technical support. This work was financially supported by the German Ministry of Education and Research project 'EHQUAM'. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Sciences, under Contract no. DE-AC02-98CH10886.
520 _ _ |a High quality, well-separated, homogeneous sizes and high aspect ratio Si-doped InN nanowires (NWs) were grown by catalyst-free molecular beam epitaxy (MBE) after optimization of the growth conditions. To this end, statistical analysis of NW density and size distribution was performed. The high crystal quality and smooth NW surfaces were observed by high resolution transmission electron microscopy. Spectral photoluminescence has shown the increase of the band filling effect with Si flux, indicating successful n-type doping. A Raman LO scattering mode appears with a pronounced low energy tail, also reported for highly doped InN films.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB89096
|a Schäfer-Nolte, E.O.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB89092
|a Caterino, R.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB89090
|a Limbach, F.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB5575
|a Stoica, T.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Sutter, E.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Jeganathan, K.
|b 6
700 1 _ |0 P:(DE-Juel1)VDB12919
|a Calarco, R.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)1362365-5
|a 10.1088/0957-4484/22/12/125704
|g Vol. 22, p. 125704
|p 125704
|q 22<125704
|t Nanotechnology
|v 22
|x 0957-4484
|y 2011
856 7 _ |u http://dx.doi.org/10.1088/0957-4484/22/12/125704
909 C O |o oai:juser.fz-juelich.de:23224
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|x 0
970 _ _ |a VDB:(DE-Juel1)140217
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21