000024640 001__ 24640
000024640 005__ 20180210130216.0
000024640 0247_ $$2DOI$$a10.1016/S0921-5107(01)00844-3
000024640 0247_ $$2WOS$$aWOS:000174015300087
000024640 037__ $$aPreJuSER-24640
000024640 041__ $$aeng
000024640 082__ $$a600
000024640 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000024640 084__ $$2WoS$$aPhysics, Condensed Matter
000024640 1001_ $$0P:(DE-Juel1)VDB9864$$aMyslivecek, J.$$b0$$uFZJ
000024640 245__ $$aOn the origin of the kinetic growth instability of homoepitaxy on Si(001)
000024640 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2002
000024640 300__ $$a410 - 414
000024640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000024640 3367_ $$2DataCite$$aOutput Types/Journal article
000024640 3367_ $$00$$2EndNote$$aJournal Article
000024640 3367_ $$2BibTeX$$aARTICLE
000024640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000024640 3367_ $$2DRIVER$$aarticle
000024640 440_0 $$04204$$aMaterials Science and Engineering B$$v89$$x0921-5107
000024640 500__ $$aRecord converted from VDB: 12.11.2012
000024640 520__ $$aThe recently observed kinetic growth instability of homoepitaxial layers on Si(001) was investigated by in-situ scanning tunneling microscopy (STM) experiments. In the step-flow, regime the instability consists of straight step bunches, and it vanishes both during two-dimensional (2-D) island growth and at high temperatures. Kinetic Monte Carlo (KMC) simulations were performed to identify the dominating mechanism causing the instability. Strong evidence for the presence of an asymmetric step-edge barrier with the behavior of an inverse Ehrlich-Schwoebel barrier is found. Comparison between the experiments and the simulations reveal that only double atomic height D-B steps, which form kinetically in a rather narrow temperature range, develop this type of step-edge barrier. (C) 2002 Published by Elsevier Science B.V.
000024640 536__ $$0G:(DE-Juel1)FUEK253$$2G:(DE-HGF)$$aMethoden und Systeme der Informationstechnik$$cI02$$x0
000024640 536__ $$0G:(DE-Juel1)FUEK242$$aKondensierte Materie$$cM02$$x1
000024640 588__ $$aDataset connected to Web of Science
000024640 650_7 $$2WoSType$$aJ
000024640 65320 $$2Author$$astep-bunching
000024640 65320 $$2Author$$aSi homoepitaxy
000024640 65320 $$2Author$$aEhrlich-Schwoebel barrier
000024640 65320 $$2Author$$akinetic Monte Carlo simulations
000024640 65320 $$2Author$$ascanning tunneling microscopy
000024640 7001_ $$0P:(DE-HGF)0$$aSchelling, C.$$b1
000024640 7001_ $$0P:(DE-HGF)0$$aSpringholz, G.$$b2
000024640 7001_ $$0P:(DE-HGF)0$$aSchäffler, F.$$b3
000024640 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b4$$uFZJ
000024640 7001_ $$0P:(DE-HGF)0$$aSmilauer, P.$$b5
000024640 773__ $$0PERI:(DE-600)1492109-1$$a10.1016/S0921-5107(01)00844-3$$gVol. 89, p. 410 - 414$$p410 - 414$$q89<410 - 414$$tMaterials science and engineering / B$$v89$$x0921-5107$$y2002
000024640 909CO $$ooai:juser.fz-juelich.de:24640$$pVDB
000024640 9131_ $$0G:(DE-Juel1)FUEK253$$bInformation$$kI02$$lInformationstechnologie mit nanoelektronischen Systemen$$vMethoden und Systeme der Informationstechnik$$x0
000024640 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x1
000024640 9141_ $$y2002
000024640 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000024640 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000024640 970__ $$aVDB:(DE-Juel1)16023
000024640 980__ $$aVDB
000024640 980__ $$aConvertedRecord
000024640 980__ $$ajournal
000024640 980__ $$aI:(DE-Juel1)PGI-3-20110106
000024640 980__ $$aUNRESTRICTED
000024640 981__ $$aI:(DE-Juel1)PGI-3-20110106