001     24644
005     20180210132123.0
024 7 _ |2 DOI
|a 10.1016/S0039-6028(02)02273-2
024 7 _ |2 WOS
|a WOS:000179515000008
037 _ _ |a PreJuSER-24644
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Myslivecek, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB9864
245 _ _ |a On the microscopic origin of the kinetic step bunching instability of vicinal Si(001)
260 _ _ |a Amsterdam
|b Elsevier
|c 2002
300 _ _ |a 193 - 206
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|v 520
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A scanning tunneling microscopy/atomic force microscopy study is presented of a kinetically driven growth instability, which leads to the formation of ripples during Si homoepitaxy on slightly vicinal Si(001) surfaces miscut in [110] direction. The instability is identified as step bunching, that occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. We demonstrate, that the growth instability with the same characteristics is observed in two dimensional kinetic Monte Carlo simulation with included Si(001)-like diffusion anisotropy. The instability is mainly caused by the interplay between diffusion anisotropy and the attachment/detachment kinetics at the different step types on Si(001) surface. This new instability mechanism does not require any additional step edge barriers to diffusion of adatoms. In addition, the evolution of ripple height and periodicity was analyzed experimentally as a function of layer thickness. A lateral "ripple-zipper" mechanism is proposed for the coarsening of the ripples. (C) 2002 Elsevier Science B.V. All rights reserved.
536 _ _ |a Methoden und Systeme der Informationstechnik
|c I02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK253
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a silicon
653 2 0 |2 Author
|a vicinal single crystal surfaces
653 2 0 |2 Author
|a molecular beam epitaxy
653 2 0 |2 Author
|a step formation and bunching
653 2 0 |2 Author
|a scanning tunneling microscopy
653 2 0 |2 Author
|a surface structure, morphology, roughness and topography
653 2 0 |2 Author
|a Monte Carlo simulations
653 2 0 |2 Author
|a surface diffusion
700 1 _ |a Schelling, C.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Schäffler, F.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Springholz, G.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Smilauer, P.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Krug, J.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Voigtländer, B.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB5601
773 _ _ |a 10.1016/S0039-6028(02)02273-2
|g Vol. 520, p. 193 - 206
|p 193 - 206
|q 520<193 - 206
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 520
|y 2002
|x 0039-6028
909 C O |o oai:juser.fz-juelich.de:24644
|p VDB
913 1 _ |k I02
|v Methoden und Systeme der Informationstechnik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK253
|x 0
914 1 _ |y 2002
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)16027
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21