000000252 001__ 252
000000252 005__ 20200731122039.0
000000252 0247_ $$2DOI$$a10.2136/vzj2007.0115
000000252 0247_ $$2WOS$$aWOS:000258444600013
000000252 0247_ $$2Handle$$a2128/25411
000000252 037__ $$aPreJuSER-252
000000252 041__ $$aeng
000000252 082__ $$a550
000000252 084__ $$2WoS$$aEnvironmental Sciences
000000252 084__ $$2WoS$$aSoil Science
000000252 084__ $$2WoS$$aWater Resources
000000252 1001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b0$$uFZJ
000000252 245__ $$aUse of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake
000000252 260__ $$aMadison, Wis.$$bSSSA$$c2008
000000252 300__ $$a1079 - 1088
000000252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000252 3367_ $$2DataCite$$aOutput Types/Journal article
000000252 3367_ $$00$$2EndNote$$aJournal Article
000000252 3367_ $$2BibTeX$$aARTICLE
000000252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000252 3367_ $$2DRIVER$$aarticle
000000252 440_0 $$010301$$aVadose Zone Journal$$v7$$x1539-1663
000000252 500__ $$aRecord converted from VDB: 12.11.2012
000000252 520__ $$aWe studied water uptake variability at the plant scale using a three-dimensional detailed model. Specifically, we investigated the sensitivity of the R-SWMS model under different plant collar conditions by comparing computed water fluxes, flow variability, and soil water distributions for different case scenarios and different parameterizations. The relative radial root conductivity and soil hydraulic conductivity were shown to control the plant water extraction distribution. Highly conductive soils promote water uptake but at the same time decrease the variability of the soil water content. A large radial root conductivity increases the amount of water extracted by the root and generates very heterogeneous water extraction profiles. Increasing the xylem conductivity has less impact because the xylem is generally the most conductive part of the system. It was also determined that, due to the different magnitudes of soil and root conductivities, similar one-dimensional sink-term profiles can result in very different water content and flux distributions at the plant scale. Furthermore, an analysis based on soil texture showed that the ability of a soil to sustain high plant transpiration demand cannot be predicted a priori from the soil hydraulic properties only, as it depends on the evaporative demand and on the three-dimensional distributions of the soil/root conductivity ratio and soil capacity, which continuously evolve with time. Combining soil and root hydraulic properties led to very complex one-dimensional sink functions that are quite different from the simple reduction functions usually found in the literature. The R-SWMS model could be used to develop more realistic one-dimensional reduction functi
000000252 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000000252 536__ $$0G:(DE-Juel1)FUEK411$$aScientific Computing$$cP41$$x1
000000252 588__ $$aDataset connected to Web of Science
000000252 650_7 $$2WoSType$$aJ
000000252 7001_ $$0P:(DE-Juel1)VDB64886$$aSchröder, T.$$b1$$uFZJ
000000252 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b2$$uFZJ
000000252 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000000252 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2007.0115$$gVol. 7, p. 1079 - 1088$$p1079 - 1088$$q7<1079 - 1088$$tVadose zone journal$$v7$$x1539-1663$$y2008
000000252 8567_ $$uhttp://dx.doi.org/10.2136/vzj2007.0115
000000252 8564_ $$uhttps://juser.fz-juelich.de/record/252/files/vzj2007.0115.pdf$$yOpenAccess
000000252 8564_ $$uhttps://juser.fz-juelich.de/record/252/files/vzj2007.0115.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000000252 909CO $$ooai:juser.fz-juelich.de:252$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000000252 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000000252 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x1
000000252 9141_ $$y2008
000000252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000000252 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000252 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000000252 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000000252 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000000252 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000000252 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000000252 970__ $$aVDB:(DE-Juel1)100474
000000252 980__ $$aVDB
000000252 980__ $$aConvertedRecord
000000252 980__ $$ajournal
000000252 980__ $$aI:(DE-Juel1)JSC-20090406
000000252 980__ $$aI:(DE-Juel1)IBG-3-20101118
000000252 980__ $$aI:(DE-82)080011_20140620
000000252 980__ $$aI:(DE-Juel1)VDB1045
000000252 980__ $$aUNRESTRICTED
000000252 9801_ $$aFullTexts
000000252 981__ $$aI:(DE-Juel1)IBG-3-20101118
000000252 981__ $$aI:(DE-Juel1)VDB1045
000000252 981__ $$aI:(DE-Juel1)VDB1047