Journal Article PreJuSER-252

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake

 ;  ;  ;

2008
SSSA Madison, Wis.

Vadose zone journal 7, 1079 - 1088 () [10.2136/vzj2007.0115]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We studied water uptake variability at the plant scale using a three-dimensional detailed model. Specifically, we investigated the sensitivity of the R-SWMS model under different plant collar conditions by comparing computed water fluxes, flow variability, and soil water distributions for different case scenarios and different parameterizations. The relative radial root conductivity and soil hydraulic conductivity were shown to control the plant water extraction distribution. Highly conductive soils promote water uptake but at the same time decrease the variability of the soil water content. A large radial root conductivity increases the amount of water extracted by the root and generates very heterogeneous water extraction profiles. Increasing the xylem conductivity has less impact because the xylem is generally the most conductive part of the system. It was also determined that, due to the different magnitudes of soil and root conductivities, similar one-dimensional sink-term profiles can result in very different water content and flux distributions at the plant scale. Furthermore, an analysis based on soil texture showed that the ability of a soil to sustain high plant transpiration demand cannot be predicted a priori from the soil hydraulic properties only, as it depends on the evaporative demand and on the three-dimensional distributions of the soil/root conductivity ratio and soil capacity, which continuously evolve with time. Combining soil and root hydraulic properties led to very complex one-dimensional sink functions that are quite different from the simple reduction functions usually found in the literature. The R-SWMS model could be used to develop more realistic one-dimensional reduction functi

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Jülich Supercomputing Centre (JSC)
  2. Agrosphäre (ICG-4)
  3. Jülich-Aachen Research Alliance - Energy (JARA-ENERGY)
  4. Jülich-Aachen Research Alliance - Simulation Sciences (JARA-SIM)
Research Program(s):
  1. Terrestrische Umwelt (P24)
  2. Scientific Computing (P41)

Appears in the scientific report 2008
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2012-11-13, last modified 2020-07-31