Abstract FZJ-2015-05651

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Sputter deposited Li7La3Zr2O$_{12}$ as electrolyte for thin film cells

 ;  ;  ;  ;  ;  ;

2015

20th International Conference on Solid State Ionics, SSI 20, Keystone, COKeystone, CO, USA, 14 Jun 2015 - 19 Jun 20152015-06-142015-06-19

Abstract: Most commercial state-of-the-art batteries work with a liquid organic electrolyte which might cause safety problems due to an insufficient thermal and electrochemical stability. Replacing the liquid by a solid electrolyte is one approach to overcome these problems. Next to sulfides and phosphates, oxide compounds like the garnet-structured Li7La3Zr2O12 (LLZ) are promising materials for solid electrolytes. LLZ exists in two modifications, a tetragonal and a cubic, whereby the cubic high temperature phase shows a higher Li-ion conductivity (about 10-4 S/cm). Further advantageous properties of LLZ are its thermal (up to 1050°C) and electrochemical stability (up to 8V) which allows its usage with high-voltage electrodes or in batteries at elevated temperatures. Since the conductivity is two orders of magnitude lower compared to organic electrolytes the overall resistance can be lowered by reduction to a thin electrolyte layer in all-solid-state cells.R.f. magnetron sputter deposition is one approach to coat large substrate areas with LLZ electrolyte. In order to get crack-free, dense and single phase LLZ thin films, deposition parameters need to be adjusted carefully, which is shown by x-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS) and scanning electron microscopy (SEM). In our study conductivities up to 10-6 S/cm are achieved for single phase cubic thin films. Furthermore, LLZ thin films were successfully integrated into all solid state cells, which are also characterized.


Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2015
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Zusammenfassungen
JARA > JARA > JARA-JARA\-ENERGY
Institutssammlungen > IMD > IMD-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-1
Publikationsdatenbank

 Datensatz erzeugt am 2015-09-14, letzte Änderung am 2024-07-08



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)