000255546 001__ 255546
000255546 005__ 20240711085651.0
000255546 0247_ $$2doi$$a10.1016/j.surfcoat.2015.06.048
000255546 0247_ $$2ISSN$$a0257-8972
000255546 0247_ $$2ISSN$$a1879-3347
000255546 0247_ $$2WOS$$aWOS:000360594600045
000255546 037__ $$aFZJ-2015-05706
000255546 041__ $$aEnglish
000255546 082__ $$a620
000255546 1001_ $$0P:(DE-Juel1)136664$$aTerberger, Philipp$$b0$$eCorresponding author$$ufzj
000255546 245__ $$aIsothermal aging of a γ′-strengthened Co–Al–W alloy coated with vacuum plasma-sprayed MCrAlY bond coats
000255546 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000255546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442833753_28359
000255546 3367_ $$2DataCite$$aOutput Types/Journal article
000255546 3367_ $$00$$2EndNote$$aJournal Article
000255546 3367_ $$2BibTeX$$aARTICLE
000255546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255546 3367_ $$2DRIVER$$aarticle
000255546 520__ $$aCobalt-based superalloys with a γ/γ′ microstructure were discovered in 2006 and are currently being investigated as an alternative to nickel-based superalloys for high-temperature, high-load applications in gas turbine blades. They promise a better castability combined with a similar creep strength. Superalloy turbine blades are commonly coated with oxidation resistant bond coats. For this reason their compatibility needs to be studied. Co–9Al–9W specimens with a γ/γ′ microstructure were coated with either a nickel-based or cobalt-based MCrAlY bond coat using vacuum plasma spraying. After aging at 900 °C in air for up to 500 h no decomposition of the γ′ phase was found in the bulk superalloy. The interdiffusion zone shows several different W-rich topologically close-packed phases arising from the dissolution of the γ′ phase in this region. The W-rich phases are identified to be μ phase for both bond coats and R phase for the nickel-based bond coat only. Their total volume is higher for the nickel-based bond coat. Therefore the cobalt-based bond coat is better suited for the Co-based superalloy substrate. Room temperature hardness and Young's modulus were measured using nanoindentation in the initial state and after heat treatment. A significantly higher Young's modulus was found for the cobalt-based bond coat.
000255546 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000255546 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000255546 588__ $$aDataset connected to CrossRef
000255546 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b1$$ufzj
000255546 7001_ $$0P:(DE-HGF)0$$aWebler, Ralf$$b2
000255546 7001_ $$0P:(DE-HGF)0$$aZiener, Marco$$b3
000255546 7001_ $$0P:(DE-HGF)0$$aNeumeier, Steffen$$b4
000255546 7001_ $$0P:(DE-HGF)0$$aKlein, Leonhard$$b5
000255546 7001_ $$0P:(DE-HGF)0$$aVirtanen, Sannakaisa$$b6
000255546 7001_ $$0P:(DE-HGF)0$$aGöken, Mathias$$b7
000255546 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b8$$ufzj
000255546 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2015.06.048$$gVol. 276, p. 360 - 367$$p360 - 367$$tSurface and coatings technology$$v276$$x0257-8972$$y2015
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.pdf$$yRestricted
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.gif?subformat=icon$$xicon$$yRestricted
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255546 8564_ $$uhttps://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255546 909CO $$ooai:juser.fz-juelich.de:255546$$pVDB
000255546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136664$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000255546 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000255546 9141_ $$y2015
000255546 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000255546 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255546 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2014
000255546 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255546 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255546 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255546 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255546 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255546 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000255546 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255546 920__ $$lyes
000255546 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000255546 980__ $$ajournal
000255546 980__ $$aVDB
000255546 980__ $$aI:(DE-Juel1)IEK-1-20101013
000255546 980__ $$aUNRESTRICTED
000255546 981__ $$aI:(DE-Juel1)IMD-2-20101013