Journal Article FZJ-2015-05706

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Isothermal aging of a γ′-strengthened Co–Al–W alloy coated with vacuum plasma-sprayed MCrAlY bond coats

 ;  ;  ;  ;  ;  ;  ;  ;

2015
Elsevier Science Amsterdam [u.a.]

Surface and coatings technology 276, 360 - 367 () [10.1016/j.surfcoat.2015.06.048]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Cobalt-based superalloys with a γ/γ′ microstructure were discovered in 2006 and are currently being investigated as an alternative to nickel-based superalloys for high-temperature, high-load applications in gas turbine blades. They promise a better castability combined with a similar creep strength. Superalloy turbine blades are commonly coated with oxidation resistant bond coats. For this reason their compatibility needs to be studied. Co–9Al–9W specimens with a γ/γ′ microstructure were coated with either a nickel-based or cobalt-based MCrAlY bond coat using vacuum plasma spraying. After aging at 900 °C in air for up to 500 h no decomposition of the γ′ phase was found in the bulk superalloy. The interdiffusion zone shows several different W-rich topologically close-packed phases arising from the dissolution of the γ′ phase in this region. The W-rich phases are identified to be μ phase for both bond coats and R phase for the nickel-based bond coat only. Their total volume is higher for the nickel-based bond coat. Therefore the cobalt-based bond coat is better suited for the Co-based superalloy substrate. Room temperature hardness and Young's modulus were measured using nanoindentation in the initial state and after heat treatment. A significantly higher Young's modulus was found for the cobalt-based bond coat.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2015-09-15, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)