001     255546
005     20240711085651.0
024 7 _ |a 10.1016/j.surfcoat.2015.06.048
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000360594600045
|2 WOS
037 _ _ |a FZJ-2015-05706
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Terberger, Philipp
|0 P:(DE-Juel1)136664
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Isothermal aging of a γ′-strengthened Co–Al–W alloy coated with vacuum plasma-sprayed MCrAlY bond coats
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442833753_28359
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Cobalt-based superalloys with a γ/γ′ microstructure were discovered in 2006 and are currently being investigated as an alternative to nickel-based superalloys for high-temperature, high-load applications in gas turbine blades. They promise a better castability combined with a similar creep strength. Superalloy turbine blades are commonly coated with oxidation resistant bond coats. For this reason their compatibility needs to be studied. Co–9Al–9W specimens with a γ/γ′ microstructure were coated with either a nickel-based or cobalt-based MCrAlY bond coat using vacuum plasma spraying. After aging at 900 °C in air for up to 500 h no decomposition of the γ′ phase was found in the bulk superalloy. The interdiffusion zone shows several different W-rich topologically close-packed phases arising from the dissolution of the γ′ phase in this region. The W-rich phases are identified to be μ phase for both bond coats and R phase for the nickel-based bond coat only. Their total volume is higher for the nickel-based bond coat. Therefore the cobalt-based bond coat is better suited for the Co-based superalloy substrate. Room temperature hardness and Young's modulus were measured using nanoindentation in the initial state and after heat treatment. A significantly higher Young's modulus was found for the cobalt-based bond coat.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 1
|u fzj
700 1 _ |a Webler, Ralf
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ziener, Marco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Neumeier, Steffen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Klein, Leonhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Virtanen, Sannakaisa
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Göken, Mathias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 8
|u fzj
773 _ _ |a 10.1016/j.surfcoat.2015.06.048
|g Vol. 276, p. 360 - 367
|0 PERI:(DE-600)1502240-7
|p 360 - 367
|t Surface and coatings technology
|v 276
|y 2015
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255546/files/1-s2.0-S0257897215300888-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255546
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136664
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21