Journal Article FZJ-2015-05711

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Long-term effects of plant diversity and composition on plant stoichiometry

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Wiley-Blackwell Oxford

Oikos 125(5), 613–621 () [10.1111/oik.02504]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Plant elemental composition can indicate resource limitation, and changes in key elemental ratios (e.g. plant C:N ratios) can influence rates including herbivory, nutrient recycling, and pathogen infection. Although plant stoichiometry can influence ecosystem-level processes, very few studies have addressed whether and how plant C:N stoichiometry changes with plant diversity and composition. Here, using two long-term experimental manipulations of plant diversity (Jena and Cedar Creek), we test whether plant richness (species and functional groups) or composition (functional group proportions) affects temporal trends and variability of community-wide C:N stoichiometry.Site fertility determined the initial community-scale C:N ratio. Communities growing on N-poor soil (Cedar Creek) began with higher C:N ratios than communities growing on N-rich soil (Jena). However, site-level plant C:N ratios converged through time, most rapidly in high diversity plots. In Jena, plant community C:N ratios increased. This temporal trend was stronger with increasing richness. However, temporal variability of C:N decreased as plant richness increased. In contrast, C:N decreased over time at Cedar Creek, most strongly at high species and functional richness, whereas the temporal variability of C:N increased with both measures of diversity at this site.Thus, temporal trends in the mean and variability of C:N were underlain by concordant changes among sites in functional group proportions. In particular, the convergence of community-scale C:N over time at these very different sites was mainly due to increasing proportions of forbs at both sites, replacing high mean C:N (C4 grasses, Cedar Creek) or low C:N (legumes, Jena) species. Diversity amplified this convergence; although temporal trends differed in sign between the sites, these trends increased in magnitude with increasing species richness. Our results suggest a predictive mechanistic link between trends in plant diversity and functional group composition and trends in the many ecosystem rates that depend on aboveground community C:N.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2015-09-16, letzte Änderung am 2021-01-29


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)