Conference Presentation (Other) FZJ-2015-05773

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Light Management in Silicon Heterojunction Solar Cells via Nanocrystalline Silicon Oxide Films and Nano-Imprint Textures

 ;  ;  ;

2015

26th International Conference on Amorphous and Nanocrystalline Semiconductors, ICANS26, AachenAachen, Germany, 13 Sep 2015 - 18 Sep 20152015-09-132015-09-18

Abstract: Excellent light management is essential to increase the amount of light being captured in the absorber of silicon heterojunction solar cells in order to obtain a high photoelectric current. Three possible ways to achieve this are improving the cell anti-reflectance, increasing the light path through the absorber material, and minimizing the parasitic losses in the other layers. The former two goals can be realized via surface texturing and the latter by using highly transparent materials. In this study, we focus on implementing hydrogenated nanocrystalline silicon oxide (nc‑SiOx:H) in combination with front side nano-imprint textures in silicon heterojuction solar cells. Nc‑SiOx:H offering a unique combination of high conductivity and high transparency is perfectly suited as an alternative wide-gap doped layer to minimize parasitic absorption. At the same time, nano-imprint technology provides a way to realize various textures on “flat” silicon solar cells without inevitably promoting recombination at the absorber interface by enlarging the surface area and increasing the number of defect states. We show by a systematic investigation how the interplay between the imprinted layer and the underlying thin films of the silicon heterojunction based solar cell affects the generated current. Ultimately, we demonstrate very high current densities and efficiencies beyond 20% without wet-chemically texturing the Si-wafer by combining the benefits of the highly transparent nanocrystalline silicon oxide layers and the favourable properties of the nano-imprint technology.


Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2015
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Conference Presentations
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database

 Record created 2015-09-22, last modified 2024-07-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)