000255639 001__ 255639
000255639 005__ 20240708133644.0
000255639 037__ $$aFZJ-2015-05773
000255639 041__ $$aEnglish
000255639 1001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b0$$eCorresponding author$$ufzj
000255639 1112_ $$a26th International Conference on Amorphous and Nanocrystalline Semiconductors$$cAachen$$d2015-09-13 - 2015-09-18$$gICANS26$$wGermany
000255639 245__ $$aLight Management in Silicon Heterojunction Solar Cells via Nanocrystalline Silicon Oxide Films and Nano-Imprint Textures
000255639 260__ $$c2015
000255639 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1446652115_12658$$xOther
000255639 3367_ $$033$$2EndNote$$aConference Paper
000255639 3367_ $$2DataCite$$aOther
000255639 3367_ $$2ORCID$$aLECTURE_SPEECH
000255639 3367_ $$2DRIVER$$aconferenceObject
000255639 3367_ $$2BibTeX$$aINPROCEEDINGS
000255639 520__ $$aExcellent light management is essential to increase the amount of light being captured in the absorber of silicon heterojunction solar cells in order to obtain a high photoelectric current. Three possible ways to achieve this are improving the cell anti-reflectance, increasing the light path through the absorber material, and minimizing the parasitic losses in the other layers. The former two goals can be realized via surface texturing and the latter by using highly transparent materials. In this study, we focus on implementing hydrogenated nanocrystalline silicon oxide (nc‑SiOx:H) in combination with front side nano-imprint textures in silicon heterojuction solar cells. Nc‑SiOx:H offering a unique combination of high conductivity and high transparency is perfectly suited as an alternative wide-gap doped layer to minimize parasitic absorption. At the same time, nano-imprint technology provides a way to realize various textures on “flat” silicon solar cells without inevitably promoting recombination at the absorber interface by enlarging the surface area and increasing the number of defect states. We show by a systematic investigation how the interplay between the imprinted layer and the underlying thin films of the silicon heterojunction based solar cell affects the generated current. Ultimately, we demonstrate very high current densities and efficiencies beyond 20% without wet-chemically texturing the Si-wafer by combining the benefits of the highly transparent nanocrystalline silicon oxide layers and the favourable properties of the nano-imprint technology.
000255639 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000255639 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000255639 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b1$$ufzj
000255639 7001_ $$0P:(DE-Juel1)130830$$aMeier, Matthias$$b2$$ufzj
000255639 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b3$$ufzj
000255639 909CO $$ooai:juser.fz-juelich.de:255639$$pVDB
000255639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130830$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000255639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255639 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000255639 9141_ $$y2015
000255639 920__ $$lyes
000255639 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000255639 980__ $$aconf
000255639 980__ $$aVDB
000255639 980__ $$aI:(DE-Juel1)IEK-5-20101013
000255639 980__ $$aUNRESTRICTED
000255639 981__ $$aI:(DE-Juel1)IMD-3-20101013