001     255938
005     20240610121225.0
024 7 _ |a 10.1021/acs.nanolett.5b01802
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000363003100023
|2 WOS
037 _ _ |a FZJ-2015-06017
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Díaz Álvarez, Adrian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonstoichiometric Low-Temperature Grown GaAs Nanowires
260 _ _ |a Washington, DC
|c 2015
|b ACS Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1444899254_25081
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump–probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates. Controlling their incorporation offers a way to obtain unique electronic and optical properties that depart from the ones found in conventional GaAs nanowires.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Tao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tütüncüoglu, Gözde
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Demonchaux, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nys, Jean-Philippe
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Berthe, Maxime
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Matteini, Federico
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Potts, Heidi A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Troadec, David
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Patriarche, Gilles
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lampin, Jean-François
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Coinon, Christophe
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Fontcuberta i Morral, Anna
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 13
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 14
700 1 _ |a Grandidier, Bruno
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.5b01802
|g p. 150909094706002 -
|0 PERI:(DE-600)2048866-X
|n 10
|p 6440–6445
|t Nano letters
|v 15
|y 2015
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255938
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21