001 | 255938 | ||
005 | 20240610121225.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.5b01802 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a WOS:000363003100023 |2 WOS |
037 | _ | _ | |a FZJ-2015-06017 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Díaz Álvarez, Adrian |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Nonstoichiometric Low-Temperature Grown GaAs Nanowires |
260 | _ | _ | |a Washington, DC |c 2015 |b ACS Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1444899254_25081 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump–probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates. Controlling their incorporation offers a way to obtain unique electronic and optical properties that depart from the ones found in conventional GaAs nanowires. |
536 | _ | _ | |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141) |0 G:(DE-HGF)POF3-141 |c POF3-141 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Xu, Tao |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tütüncüoglu, Gözde |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Demonchaux, Thomas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Nys, Jean-Philippe |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Berthe, Maxime |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Matteini, Federico |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Potts, Heidi A. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Troadec, David |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Patriarche, Gilles |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Lampin, Jean-François |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Coinon, Christophe |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Fontcuberta i Morral, Anna |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 13 |
700 | 1 | _ | |a Ebert, Philipp |0 P:(DE-Juel1)130627 |b 14 |
700 | 1 | _ | |a Grandidier, Bruno |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.5b01802 |g p. 150909094706002 - |0 PERI:(DE-600)2048866-X |n 10 |p 6440–6445 |t Nano letters |v 15 |y 2015 |x 1530-6992 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255938/files/acs%252Enanolett%252E5b01802.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:255938 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)130627 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-141 |2 G:(DE-HGF)POF3-100 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2014 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|