001     255940
005     20210129220555.0
020 _ _ |a 978-0-9933933-0-3
037 _ _ |a FZJ-2015-06019
041 _ _ |a English
100 1 _ |a Schröder, Benjamin
|0 P:(DE-Juel1)159233
|b 0
|e Corresponding author
111 2 _ |a Human Behaviour in Fire Symposium 2015
|c Cambridge
|d 2015-09-28 - 2015-09-30
|w United Kingdom
245 _ _ |a Knowledge- and Perception-based Route Choice Modelling in Case of Fire
260 _ _ |c 2015
|b Interscience Communications Limited
295 1 0 |a 6th International Symposium on Human Behaviour in Fire 2015
300 _ _ |a 327-338
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1444211517_7754
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The life safety assessment in case of fire has already been investigated in numerous publicationsand many evacuation models are capable to consider fire-relevant field quantities. Commonly, the modellingof human-fire-interaction is based on a visibility-dependent reduction of movement speeds anddose-effect-relationships for toxic or irritant fire effluents. With regards to the tactical level of evacuationmodels, another challenge is the modelling of individual behavioural patterns like dynamic routingstrategies during fire. Experimental as well as post-incident studies imply the consideration of theseaspects in coupled fire and evacuation analyses. In our work, we aim to set up a modelling frameworkto address these patterns based on individual knowledge about a structure as well as the perception offire-related effects. For this purpose, we present a coupled fire and evacuation analysis based on a simplifiedtest scenario. The fire-relevant field quantities are calculated with NIST’s Fire Dynamics SimulatorVersion 6.1.2. For the evacuation simulation, we apply the research framework JuPedSim extended by aversatile routing submodel that utilises the cognitive map concept and perception modelling. Finally, thepresented modelling approach is tested with a functional verification and a parameter sensitivity analysis.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a ORPHEUS - Optimierung der Rauchableitung und Personenführung in U-Bahnhöfen: Experimente und Simulationen (BMBF-13N13266)
|0 G:(DE-Juel1)BMBF-13N13266
|c BMBF-13N13266
|x 1
536 _ _ |a QBSF - Quantitative Beschreibung der Staubildung in Fußgängerströmen (237590515)
|0 G:(GEPRIS)237590515
|c 237590515
|x 2
700 1 _ |a Haensel, David
|0 P:(DE-Juel1)161429
|b 1
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 3
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 4
700 1 _ |a Andresen, Erik
|0 P:(DE-HGF)0
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/255940/files/Paper.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255940
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159233
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161429
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132044
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21