000025968 001__ 25968
000025968 005__ 20180210124651.0
000025968 0247_ $$2DOI$$a10.1080/713715993
000025968 0247_ $$2WOS$$aWOS:000176861500036
000025968 037__ $$aPreJuSER-25968
000025968 041__ $$aeng
000025968 082__ $$a530
000025968 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000025968 084__ $$2WoS$$aPhysics, Condensed Matter
000025968 1001_ $$0P:(DE-HGF)0$$aHölbling, T.$$b0
000025968 245__ $$aSimulation of the charge transport across grain boundaries in P-type SrTiO3 ceramics
000025968 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2002
000025968 300__ $$a215 - 220
000025968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000025968 3367_ $$2DataCite$$aOutput Types/Journal article
000025968 3367_ $$00$$2EndNote$$aJournal Article
000025968 3367_ $$2BibTeX$$aARTICLE
000025968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000025968 3367_ $$2DRIVER$$aarticle
000025968 440_0 $$02058$$aFerroelectrics$$v268$$x0015-0193
000025968 500__ $$aRecord converted from VDB: 12.11.2012
000025968 520__ $$aA mathematical-physical model to describe the charge transport across grain boundaries (GBs) in p-type SrTiO3 ceramics under DC load was developed. The model structure consists of a 1-dimensional cross section through a ceramic scenario that is bounded by electrodes. After an initial electrostatic simulation a DC bias voltage step is applied. The evolution of the spatial profiles of electric potential, defect concentrations etc., and the current response are calculated. The results for the ceramic model structure confirm the experimentally observed Debye relaxation, and the characteristic dependence of long-term conductivity on the DC bias after space-charge polarization.
000025968 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000025968 588__ $$aDataset connected to Web of Science
000025968 650_7 $$2WoSType$$aJ
000025968 65320 $$2Author$$asimulation
000025968 65320 $$2Author$$agrain boundary
000025968 65320 $$2Author$$acharge transport
000025968 65320 $$2Author$$aconductivity
000025968 65320 $$2Author$$aceramics
000025968 65320 $$2Author$$aSrTiO3
000025968 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ
000025968 773__ $$0PERI:(DE-600)2042895-9$$a10.1080/713715993$$gVol. 268, p. 215 - 220$$p215 - 220$$q268<215 - 220$$tFerroelectrics$$v268$$x0015-0193$$y2002
000025968 909CO $$ooai:juser.fz-juelich.de:25968$$pVDB
000025968 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000025968 9141_ $$y2002
000025968 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000025968 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000025968 970__ $$aVDB:(DE-Juel1)17365
000025968 980__ $$aVDB
000025968 980__ $$aConvertedRecord
000025968 980__ $$ajournal
000025968 980__ $$aI:(DE-Juel1)PGI-7-20110106
000025968 980__ $$aUNRESTRICTED
000025968 981__ $$aI:(DE-Juel1)PGI-7-20110106