Home > Publications database > Omega-Gated Silicon and Strained Silicon Nanowire Array Tunneling FETs > print |
001 | 276247 | ||
005 | 20210129220825.0 | ||
024 | 7 | _ | |a 10.1109/LED.2012.2213573 |2 doi |
024 | 7 | _ | |a 0741-3106 |2 ISSN |
024 | 7 | _ | |a 1558-0563 |2 ISSN |
024 | 7 | _ | |a WOS:000310387100008 |2 WOS |
037 | _ | _ | |a FZJ-2015-06710 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Richter, S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Omega-Gated Silicon and Strained Silicon Nanowire Array Tunneling FETs |
260 | _ | _ | |a New York, NY |c 2012 |b IEEE |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1448355527_32104 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a This letter presents experimental results on tunneling field-effect transistors featuring arrays of Ω-gated uniaxially strained and unstrained silicon nanowires. The gate control of a SiO2/poly-Si gate stack is compared with a high-k/metal gate stack. Steep inverse subthreshold slopes down to 76 mV/dec and relatively high on-currents were achieved with the combination of high-k/metal gate and strained silicon nanowires. We observed negative differential conductance in the output characteristics, which we attribute to hot-carrier effects in the strong electric fields at the reverse-biased tunnel junction. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sandow, C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Nichau, A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Trellenkamp, S. |0 P:(DE-Juel1)128856 |b 3 |
700 | 1 | _ | |a Schmidt, M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Luptak, R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Bourdelle, K. K. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Zhao, Q. T. |0 P:(DE-Juel1)128649 |b 7 |u fzj |
700 | 1 | _ | |a Mantl, S. |0 P:(DE-Juel1)128609 |b 8 |u fzj |
773 | _ | _ | |a 10.1109/LED.2012.2213573 |g Vol. 33, no. 11, p. 1535 - 1537 |0 PERI:(DE-600)2034325-5 |n 11 |p 1535 - 1537 |t IEEE electron device letters |v 33 |y 2012 |x 1558-0563 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276247/files/06313886.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:276247 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)5960 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)128618 |
910 | 1 | _ | |a PGI-8-PT |0 I:(DE-Juel1)PGI-8-PT-20110228 |k PGI-8-PT |b 3 |6 P:(DE-Juel1)128856 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128649 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128609 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE ELECTR DEVICE L : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|