000276251 001__ 276251
000276251 005__ 20210129220826.0
000276251 0247_ $$2doi$$a10.1021/nl204500r
000276251 0247_ $$2ISSN$$a1530-6984
000276251 0247_ $$2ISSN$$a1530-6992
000276251 0247_ $$2WOS$$aWOS:000305106400020
000276251 037__ $$aFZJ-2015-06714
000276251 041__ $$aEnglish
000276251 082__ $$a540
000276251 1001_ $$0P:(DE-HGF)0$$aBlömers, Ch.$$b0$$eCorresponding author
000276251 245__ $$aElectronic Transport with Dielectric Confinement in Degenerate InN Nanowires
000276251 260__ $$aWashington, DC$$bACS Publ.$$c2012
000276251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1448437088_32100
000276251 3367_ $$2DataCite$$aOutput Types/Journal article
000276251 3367_ $$00$$2EndNote$$aJournal Article
000276251 3367_ $$2BibTeX$$aARTICLE
000276251 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276251 3367_ $$2DRIVER$$aarticle
000276251 500__ $$3POF3_Assignment on 2016-02-29
000276251 520__ $$aIn this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.
000276251 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000276251 588__ $$aDataset connected to CrossRef
000276251 7001_ $$0P:(DE-HGF)0$$aLu, J. G.$$b1
000276251 7001_ $$0P:(DE-HGF)0$$aHuang, L.$$b2
000276251 7001_ $$0P:(DE-HGF)0$$aWitte, C.$$b3
000276251 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b4
000276251 7001_ $$0P:(DE-Juel1)128608$$aLüth, H.$$b5
000276251 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b6
000276251 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl204500r$$gVol. 12, no. 6, p. 2768 - 2772$$n6$$p2768 - 2772$$tNano letters$$v12$$x1530-6992$$y2012
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.pdf$$yRestricted
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.gif?subformat=icon$$xicon$$yRestricted
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-180$$xicon-180$$yRestricted
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-640$$xicon-640$$yRestricted
000276251 8564_ $$uhttps://juser.fz-juelich.de/record/276251/files/nl204500r.pdf?subformat=pdfa$$xpdfa$$yRestricted
000276251 909CO $$ooai:juser.fz-juelich.de:276251$$pVDB
000276251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125566$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000276251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000276251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000276251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000276251 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000276251 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000276251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276251 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000276251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2014
000276251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276251 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276251 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276251 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2014
000276251 920__ $$lyes
000276251 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000276251 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000276251 980__ $$ajournal
000276251 980__ $$aVDB
000276251 980__ $$aI:(DE-Juel1)PGI-9-20110106
000276251 980__ $$aI:(DE-82)080009_20140620
000276251 980__ $$aUNRESTRICTED