001     276251
005     20210129220826.0
024 7 _ |a 10.1021/nl204500r
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000305106400020
|2 WOS
037 _ _ |a FZJ-2015-06714
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Blömers, Ch.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Electronic Transport with Dielectric Confinement in Degenerate InN Nanowires
260 _ _ |a Washington, DC
|c 2012
|b ACS Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448437088_32100
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lu, J. G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Huang, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Witte, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 4
700 1 _ |a Lüth, H.
|0 P:(DE-Juel1)128608
|b 5
700 1 _ |a Schäpers, Th.
|0 P:(DE-Juel1)128634
|b 6
773 _ _ |a 10.1021/nl204500r
|g Vol. 12, no. 6, p. 2768 - 2772
|0 PERI:(DE-600)2048866-X
|n 6
|p 2768 - 2772
|t Nano letters
|v 12
|y 2012
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276251/files/nl204500r.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276251
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)125566
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128634
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21