000279269 001__ 279269
000279269 005__ 20210129221024.0
000279269 0247_ $$2doi$$a10.1109/JETCAS.2015.2426491
000279269 0247_ $$2WOS$$aWOS:000356166200005
000279269 037__ $$aFZJ-2015-07284
000279269 082__ $$a620
000279269 1001_ $$0P:(DE-HGF)0$$aNielen, Lutz$$b0$$eCorresponding author
000279269 245__ $$aStudy of Memristive Associative Capacitive Networks for CAM Applications
000279269 260__ $$aNew York, NY$$bIEEE$$c2015
000279269 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449673541_32508
000279269 3367_ $$2DataCite$$aOutput Types/Journal article
000279269 3367_ $$00$$2EndNote$$aJournal Article
000279269 3367_ $$2BibTeX$$aARTICLE
000279269 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279269 3367_ $$2DRIVER$$aarticle
000279269 520__ $$aResistively switching devices are key enabler for future hybrid CMOS/nano-crossbar array architectures. Due to the availability of nonvolatile states novel reconfigurable in-memory computing approaches become feasible. In particular complementary resistive switches are highly attractive cross-point junction elements due to their inherent sneak path prevention. By applying a nondestructive capacitive readout procedure the complementary resistive switches implement reconfigurable associative capacitive networks. Those networks establish the functionality of content addressable memories and enable memory intensive computing operations for realization of pattern recognition tasks. These are essential for router or network switch applications. In this study a highly accurate physics-based dynamical memristive device model is used to evaluate the network properties for various configurations. The high ON-to-OFF ratio of electrochemical metallization cells beneficially supports the functionality of the network. The voltage margin and energy consumption are analyzed for various crossbar array sizes. Moreover, a test setup to study those networks supported by measurements was developed and proof-of-concept results for a pre-programmed capacitive array are presented.
000279269 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000279269 588__ $$aDataset connected to CrossRef
000279269 7001_ $$0P:(DE-HGF)0$$aSiemon, Anne$$b1
000279269 7001_ $$0P:(DE-HGF)0$$aTappertzhofen, Stefan$$b2
000279269 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$ufzj
000279269 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b4
000279269 7001_ $$0P:(DE-HGF)0$$aLinn, Eike$$b5
000279269 773__ $$0PERI:(DE-600)2585706-X$$a10.1109/JETCAS.2015.2426491$$gVol. 5, no. 2, p. 153 - 161$$n2$$p153 - 161$$tIEEE journal on emerging and selected topics in circuits and systems$$v5$$x2156-3357$$y2015
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.pdf$$yRestricted
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.gif?subformat=icon$$xicon$$yRestricted
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279269 8564_ $$uhttps://juser.fz-juelich.de/record/279269/files/07105971.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279269 909CO $$ooai:juser.fz-juelich.de:279269$$pVDB
000279269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279269 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000279269 9141_ $$y2015
000279269 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J EM SEL TOP C : 2014
000279269 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279269 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279269 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279269 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279269 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000279269 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279269 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000279269 980__ $$ajournal
000279269 980__ $$aVDB
000279269 980__ $$aI:(DE-Juel1)PGI-7-20110106
000279269 980__ $$aUNRESTRICTED