Journal Article FZJ-2015-07284

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Study of Memristive Associative Capacitive Networks for CAM Applications

 ;  ;  ;  ;  ;

2015
IEEE New York, NY

IEEE journal on emerging and selected topics in circuits and systems 5(2), 153 - 161 () [10.1109/JETCAS.2015.2426491]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Resistively switching devices are key enabler for future hybrid CMOS/nano-crossbar array architectures. Due to the availability of nonvolatile states novel reconfigurable in-memory computing approaches become feasible. In particular complementary resistive switches are highly attractive cross-point junction elements due to their inherent sneak path prevention. By applying a nondestructive capacitive readout procedure the complementary resistive switches implement reconfigurable associative capacitive networks. Those networks establish the functionality of content addressable memories and enable memory intensive computing operations for realization of pattern recognition tasks. These are essential for router or network switch applications. In this study a highly accurate physics-based dynamical memristive device model is used to evaluate the network properties for various configurations. The high ON-to-OFF ratio of electrochemical metallization cells beneficially supports the functionality of the network. The voltage margin and energy consumption are analyzed for various crossbar array sizes. Moreover, a test setup to study those networks supported by measurements was developed and proof-of-concept results for a pre-programmed capacitive array are presented.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2015
Database coverage:
Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2015-12-09, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)