000279377 001__ 279377
000279377 005__ 20240712100846.0
000279377 0247_ $$2doi$$a10.5194/acp-15-13145-2015
000279377 0247_ $$2ISSN$$a1680-7316
000279377 0247_ $$2ISSN$$a1680-7324
000279377 0247_ $$2Handle$$a2128/9570
000279377 0247_ $$2WOS$$aWOS:000365977100027
000279377 037__ $$aFZJ-2015-07389
000279377 041__ $$aEnglish
000279377 082__ $$a550
000279377 1001_ $$0P:(DE-Juel1)129141$$aPloeger, F.$$b0$$eCorresponding author
000279377 245__ $$aA potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone
000279377 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000279377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453727233_6244
000279377 3367_ $$2DataCite$$aOutput Types/Journal article
000279377 3367_ $$00$$2EndNote$$aJournal Article
000279377 3367_ $$2BibTeX$$aARTICLE
000279377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279377 3367_ $$2DRIVER$$aarticle
000279377 520__ $$aThe Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.
000279377 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000279377 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000279377 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000279377 588__ $$aDataset connected to CrossRef
000279377 7001_ $$0P:(DE-Juel1)159214$$aGottschling, C.$$b1
000279377 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b2$$ufzj
000279377 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b3
000279377 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b4
000279377 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b5
000279377 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b6
000279377 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b7
000279377 7001_ $$0P:(DE-Juel1)129158$$aStroh, F.$$b8
000279377 7001_ $$0P:(DE-Juel1)156119$$aTao, M.$$b9
000279377 7001_ $$00000-0001-9095-8332$$aUngermann, J.$$b10
000279377 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b11
000279377 7001_ $$0P:(DE-Juel1)129170$$avon Hobe, M.$$b12
000279377 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-13145-2015$$gVol. 15, no. 22, p. 13145 - 13159$$n22$$p13145 - 13159$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000279377 8564_ $$uhttps://juser.fz-juelich.de/record/279377/files/acp-15-13145-2015.pdf$$yOpenAccess
000279377 8564_ $$uhttps://juser.fz-juelich.de/record/279377/files/acp-15-13145-2015.gif?subformat=icon$$xicon$$yOpenAccess
000279377 8564_ $$uhttps://juser.fz-juelich.de/record/279377/files/acp-15-13145-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279377 8564_ $$uhttps://juser.fz-juelich.de/record/279377/files/acp-15-13145-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279377 8564_ $$uhttps://juser.fz-juelich.de/record/279377/files/acp-15-13145-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279377 8767_ $$92015-07-01$$d2015-07-01$$eAPC$$jZahlung erfolgt$$pacp-2015-113
000279377 909CO $$ooai:juser.fz-juelich.de:279377$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000279377 9141_ $$y2015
000279377 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279377 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279377 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000279377 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279377 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279377 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000279377 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279377 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000279377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129158$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000279377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000279377 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000279377 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000279377 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000279377 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000279377 9801_ $$aUNRESTRICTED
000279377 9801_ $$aFullTexts
000279377 980__ $$ajournal
000279377 980__ $$aVDB
000279377 980__ $$aI:(DE-Juel1)IEK-7-20101013
000279377 980__ $$aI:(DE-Juel1)JSC-20090406
000279377 980__ $$aUNRESTRICTED
000279377 980__ $$aAPC
000279377 981__ $$aI:(DE-Juel1)ICE-4-20101013
000279377 981__ $$aI:(DE-Juel1)JSC-20090406