Journal Article FZJ-2015-07389

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 15(22), 13145 - 13159 () [10.5194/acp-15-13145-2015]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.

Classification:

Contributing Institute(s):
  1. Stratosphäre (IEK-7)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) (POF3-244)
  2. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  3. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2015
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-4
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
IEK > IEK-7
Publications database
Open Access

 Record created 2015-12-10, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)