000280075 001__ 280075
000280075 005__ 20210129221210.0
000280075 0247_ $$2doi$$a10.1016/j.sse.2015.05.032
000280075 0247_ $$2ISSN$$a0038-1101
000280075 0247_ $$2ISSN$$a1879-2405
000280075 0247_ $$2WOS$$aWOS:000359170600029
000280075 037__ $$aFZJ-2015-07822
000280075 041__ $$aEnglish
000280075 082__ $$a530
000280075 1001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, Christian$$b0$$eCorresponding author
000280075 245__ $$aExperimental demonstration of improved analog device performance of nanowire-TFETs
000280075 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2015
000280075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452698420_2868
000280075 3367_ $$2DataCite$$aOutput Types/Journal article
000280075 3367_ $$00$$2EndNote$$aJournal Article
000280075 3367_ $$2BibTeX$$aARTICLE
000280075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280075 3367_ $$2DRIVER$$aarticle
000280075 520__ $$aWe present experimental data on analog device performance of p-type planar- and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs) as well as on n-type Tri-Gate-TFETs. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameters of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-currents up to 23 μA/μm at a gate overdrive of Vgt = Vd = −1 V were achieved for the GAA NW-pTFETs. Furthermore, a good output current-saturation is observed leading to high intrinsic gain up to 217. The Tri-Gate nTFETs beat the fundamental MOSFET limit for the subthreshold slope of 60 mV/dec and by that also reach extremely high transconductance efficiencies up to 82 V−1.
000280075 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000280075 536__ $$0G:(EU-Grant)619509$$aE2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)$$c619509$$fFP7-ICT-2013-11$$x1
000280075 588__ $$aDataset connected to CrossRef
000280075 7001_ $$0P:(DE-HGF)0$$aRichter, Simon$$b1
000280075 7001_ $$0P:(DE-HGF)0$$aKnoll, Lars$$b2
000280075 7001_ $$0P:(DE-HGF)0$$aSelmi, Luca$$b3
000280075 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b4
000280075 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b5
000280075 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2015.05.032$$gVol. 113, p. 179 - 183$$p179 - 183$$tSolid state electronics$$v113$$x0038-1101$$y2015
000280075 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0038110115001641
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.pdf$$yRestricted
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.gif?subformat=icon$$xicon$$yRestricted
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280075 8564_ $$uhttps://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280075 909CO $$ooai:juser.fz-juelich.de:280075$$pec_fundedresources$$pVDB$$popenaire
000280075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5960$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162211$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280075 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280075 9141_ $$y2015
000280075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280075 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE ELECTRON : 2014
000280075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280075 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280075 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280075 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280075 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280075 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280075 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280075 920__ $$lyes
000280075 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000280075 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280075 980__ $$ajournal
000280075 980__ $$aVDB
000280075 980__ $$aUNRESTRICTED
000280075 980__ $$aI:(DE-Juel1)PGI-9-20110106
000280075 980__ $$aI:(DE-82)080009_20140620