001     280075
005     20210129221210.0
024 7 _ |a 10.1016/j.sse.2015.05.032
|2 doi
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a WOS:000359170600029
|2 WOS
037 _ _ |a FZJ-2015-07822
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Schulte-Braucks, Christian
|0 P:(DE-Juel1)161530
|b 0
|e Corresponding author
245 _ _ |a Experimental demonstration of improved analog device performance of nanowire-TFETs
260 _ _ |a Oxford [u.a.]
|c 2015
|b Pergamon, Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452698420_2868
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present experimental data on analog device performance of p-type planar- and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs) as well as on n-type Tri-Gate-TFETs. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameters of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-currents up to 23 μA/μm at a gate overdrive of Vgt = Vd = −1 V were achieved for the GAA NW-pTFETs. Furthermore, a good output current-saturation is observed leading to high intrinsic gain up to 217. The Tri-Gate nTFETs beat the fundamental MOSFET limit for the subthreshold slope of 60 mV/dec and by that also reach extremely high transconductance efficiencies up to 82 V−1.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)
|0 G:(EU-Grant)619509
|c 619509
|f FP7-ICT-2013-11
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Richter, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Knoll, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Selmi, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 4
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 5
773 _ _ |a 10.1016/j.sse.2015.05.032
|g Vol. 113, p. 179 - 183
|0 PERI:(DE-600)2012825-3
|p 179 - 183
|t Solid state electronics
|v 113
|y 2015
|x 0038-1101
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0038110115001641
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280075/files/1-s2.0-S0038110115001641-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280075
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5960
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162211
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE ELECTRON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21