000280300 001__ 280300
000280300 005__ 20240610120654.0
000280300 0247_ $$2doi$$a10.1063/1.4927623
000280300 0247_ $$2ISSN$$a0021-8979
000280300 0247_ $$2ISSN$$a0148-6349
000280300 0247_ $$2ISSN$$a1089-7550
000280300 0247_ $$2Handle$$a2128/17101
000280300 0247_ $$2WOS$$aWOS:000359376700026
000280300 0247_ $$2altmetric$$aaltmetric:4357822
000280300 037__ $$aFZJ-2016-00089
000280300 082__ $$a530
000280300 1001_ $$0P:(DE-HGF)0$$aKasama, T.$$b0$$eCorresponding author
000280300 245__ $$aDirect observation of doping incorporation pathways in self-catalytic GaMnAs nanowires
000280300 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000280300 3367_ $$2DRIVER$$aarticle
000280300 3367_ $$2DataCite$$aOutput Types/Journal article
000280300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452066050_26996
000280300 3367_ $$2BibTeX$$aARTICLE
000280300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280300 3367_ $$00$$2EndNote$$aJournal Article
000280300 520__ $$aDoping mechanisms of Mn in GaAs nanowires (NWs) that have been grown self-catalytically at 600 °C by molecular beam epitaxy (MBE) are investigated using advanced electron microscopy techniques and atom probe tomography. Mn is found to be incorporated primarily in the form of non-magnetic tetragonal Ga0.82Mn0.18 nanocrystals in Ga catalyst droplets at the ends of the NWs, while trace amounts of Mn (22 ± 4 at. ppm) are also distributed randomly in the NW bodies without forming clusters or precipitates. The nanocrystals are likely to form after switching off the reaction in the MBE chamber, since they are partially embedded in neck regions of the NWs. The Ga0.82Mn0.18 nanocrystals and the low Mn concentration in the NW bodies are insufficient to induce a ferromagnetic phase transition, suggesting that it is difficult to have high Mn contents in GaAs even in 1-D NW growth via the vapor-liquid-solid process.
000280300 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000280300 588__ $$aDataset connected to CrossRef
000280300 7001_ $$00000-0002-6097-6895$$aThuvander, M.$$b1
000280300 7001_ $$0P:(DE-HGF)0$$aSiusys, A.$$b2
000280300 7001_ $$0P:(DE-HGF)0$$aGontard, L. C.$$b3
000280300 7001_ $$0P:(DE-Juel1)144926$$aKovács, A.$$b4
000280300 7001_ $$0P:(DE-HGF)0$$aYazdi, S.$$b5
000280300 7001_ $$00000-0003-2105-3059$$aDuchamp, M.$$b6
000280300 7001_ $$00000-0001-9289-5961$$aGustafsson, A.$$b7
000280300 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8$$ufzj
000280300 7001_ $$00000-0002-9495-2648$$aSadowski, J.$$b9
000280300 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4927623$$gVol. 118, no. 5, p. 054302 -$$n5$$p054302 -$$tJournal of applied physics$$v118$$x1089-7550$$y2015
000280300 8564_ $$uhttps://juser.fz-juelich.de/record/280300/files/1.4927623.pdf$$yOpenAccess
000280300 8564_ $$uhttps://juser.fz-juelich.de/record/280300/files/1.4927623.gif?subformat=icon$$xicon$$yOpenAccess
000280300 8564_ $$uhttps://juser.fz-juelich.de/record/280300/files/1.4927623.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280300 8564_ $$uhttps://juser.fz-juelich.de/record/280300/files/1.4927623.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000280300 8564_ $$uhttps://juser.fz-juelich.de/record/280300/files/1.4927623.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280300 909CO $$ooai:juser.fz-juelich.de:280300$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000280300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2014
000280300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280300 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280300 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280300 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280300 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280300 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280300 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280300 9141_ $$y2015
000280300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280300 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000280300 920__ $$lyes
000280300 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000280300 9801_ $$aFullTexts
000280300 980__ $$ajournal
000280300 980__ $$aVDB
000280300 980__ $$aUNRESTRICTED
000280300 980__ $$aI:(DE-Juel1)PGI-5-20110106
000280300 981__ $$aI:(DE-Juel1)ER-C-1-20170209