000280918 001__ 280918
000280918 005__ 20220930130055.0
000280918 0247_ $$2doi$$a10.1103/PhysRevLett.115.066801
000280918 0247_ $$2ISSN$$a0031-9007
000280918 0247_ $$2ISSN$$a1079-7114
000280918 0247_ $$2Handle$$a2128/9748
000280918 0247_ $$2WOS$$aWOS:000358937600009
000280918 0247_ $$2altmetric$$aaltmetric:3973978
000280918 037__ $$aFZJ-2016-00629
000280918 041__ $$aEnglish
000280918 082__ $$a550
000280918 1001_ $$0P:(DE-Juel1)162164$$aJust, Sven$$b0$$eCorresponding author
000280918 245__ $$aSurface and Step Conductivities on Si(111) Surfaces
000280918 260__ $$aCollege Park, Md.$$bAPS$$c2015
000280918 3367_ $$2DRIVER$$aarticle
000280918 3367_ $$2DataCite$$aOutput Types/Journal article
000280918 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467703530_2696
000280918 3367_ $$2BibTeX$$aARTICLE
000280918 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280918 3367_ $$00$$2EndNote$$aJournal Article
000280918 520__ $$aFour-point measurements using a multitip scanning tunneling microscope are carried out in order to determine surface and step conductivities on Si(111) surfaces. In a first step, distance-dependent four-point measurements in the linear configuration are used in combination with an analytical three-layer model for charge transport to disentangle the 2D surface conductivity from nonsurface contributions. A termination of the Si(111) surface with either Bi or H results in the two limiting cases of a pure 2D or 3D conductance, respectively. In order to further disentangle the surface conductivity of the step-free surface from the contribution due to atomic steps, a square four-probe configuration is applied as a function of the rotation angle. In total, this combined approach leads to an atomic step conductivity of σstep=(29±9)  Ω−1 m−1 and to a step-free surface conductivity of σsurf=(9±2)×10−6  Ω−1/□ for the Si(111)−(7×7) surface.
000280918 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280918 588__ $$aDataset connected to CrossRef
000280918 7001_ $$0P:(DE-Juel1)140146$$aBlab, Marcus$$b1
000280918 7001_ $$0P:(DE-Juel1)138943$$aKorte, Stefan$$b2$$ufzj
000280918 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b3$$ufzj
000280918 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b4$$ufzj
000280918 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b5$$eCorresponding author$$ufzj
000280918 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.066801$$gVol. 115, no. 6, p. 066801$$n6$$p066801$$tPhysical review letters$$v115$$x1079-7114$$y2015
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.pdf$$yOpenAccess
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.gif?subformat=icon$$xicon$$yOpenAccess
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280918 8564_ $$uhttps://juser.fz-juelich.de/record/280918/files/PhysRevLett.115.066801.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280918 8767_ $$92015-06-23$$d2015-06-23$$eHybrid-OA$$jZahlung erfolgt$$lKK: Mittermaier
000280918 8767_ $$92015-06-12$$d2015-06-12$$ePublication charges$$jZahlung erfolgt$$lKK: Mittermaier
000280918 909CO $$ooai:juser.fz-juelich.de:280918$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000280918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162164$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138943$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280918 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280918 9141_ $$y2015
000280918 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280918 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280918 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000280918 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000280918 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280918 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280918 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280918 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280918 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280918 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280918 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280918 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280918 920__ $$lyes
000280918 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280918 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280918 9801_ $$aUNRESTRICTED
000280918 9801_ $$aFullTexts
000280918 980__ $$ajournal
000280918 980__ $$aVDB
000280918 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280918 980__ $$aI:(DE-82)080009_20140620
000280918 980__ $$aUNRESTRICTED
000280918 980__ $$aAPC