000280924 001__ 280924 000280924 005__ 20220930130055.0 000280924 0247_ $$2doi$$a10.1103/PhysRevLett.115.026101 000280924 0247_ $$2ISSN$$a0031-9007 000280924 0247_ $$2ISSN$$a1079-7114 000280924 0247_ $$2Handle$$a2128/9749 000280924 0247_ $$2WOS$$aWOS:000357500500006 000280924 0247_ $$2altmetric$$aaltmetric:3847806 000280924 037__ $$aFZJ-2016-00635 000280924 041__ $$aEnglish 000280924 082__ $$a550 000280924 1001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b0$$eCorresponding author 000280924 245__ $$aScanning Quantum Dot Microscopy 000280924 260__ $$aCollege Park, Md.$$bAPS$$c2015 000280924 3367_ $$2DRIVER$$aarticle 000280924 3367_ $$2DataCite$$aOutput Types/Journal article 000280924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502086328_15123 000280924 3367_ $$2BibTeX$$aARTICLE 000280924 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000280924 3367_ $$00$$2EndNote$$aJournal Article 000280924 520__ $$aWe introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness. 000280924 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0 000280924 536__ $$0G:(DE-Juel1)hms17_20140501$$aSpectra of 2D layered materials (hms17_20140501)$$chms17_20140501$$fSpectra of 2D layered materials$$x1 000280924 588__ $$aDataset connected to CrossRef 000280924 7001_ $$0P:(DE-HGF)0$$aGreen, Matthew F. B.$$b1 000280924 7001_ $$0P:(DE-Juel1)164154$$aLeinen, Philipp$$b2 000280924 7001_ $$0P:(DE-HGF)0$$aDeilmann, Thorsten$$b3 000280924 7001_ $$0P:(DE-HGF)0$$aKrüger, Peter$$b4 000280924 7001_ $$0P:(DE-HGF)0$$aRohlfing, Michael$$b5 000280924 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b6$$eCorresponding author 000280924 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b7$$ufzj 000280924 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.026101$$gVol. 115, no. 2, p. 026101$$n2$$p026101$$tPhysical review letters$$v115$$x1079-7114$$y2015 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.pdf$$yOpenAccess 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.gif?subformat=icon$$xicon$$yOpenAccess 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000280924 8767_ $$92015-05-13$$d2015-05-18$$eHybrid-OA$$jZahlung erfolgt 000280924 8767_ $$92015-05-13$$d2015-05-18$$eColour charges$$jZahlung erfolgt 000280924 909CO $$ooai:juser.fz-juelich.de:280924$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164154$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b7$$kFZJ 000280924 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000280924 9141_ $$y2015 000280924 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000280924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000280924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013 000280924 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013 000280924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000280924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000280924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000280924 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000280924 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000280924 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000280924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000280924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000280924 920__ $$lyes 000280924 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0 000280924 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000280924 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2 000280924 9801_ $$aUNRESTRICTED 000280924 9801_ $$aFullTexts 000280924 980__ $$ajournal 000280924 980__ $$aVDB 000280924 980__ $$aI:(DE-Juel1)PGI-3-20110106 000280924 980__ $$aI:(DE-82)080009_20140620 000280924 980__ $$aI:(DE-Juel1)NIC-20090406 000280924 980__ $$aUNRESTRICTED 000280924 980__ $$aAPC