000280924 001__ 280924
000280924 005__ 20220930130055.0
000280924 0247_ $$2doi$$a10.1103/PhysRevLett.115.026101
000280924 0247_ $$2ISSN$$a0031-9007
000280924 0247_ $$2ISSN$$a1079-7114
000280924 0247_ $$2Handle$$a2128/9749
000280924 0247_ $$2WOS$$aWOS:000357500500006
000280924 0247_ $$2altmetric$$aaltmetric:3847806
000280924 037__ $$aFZJ-2016-00635
000280924 041__ $$aEnglish
000280924 082__ $$a550
000280924 1001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b0$$eCorresponding author
000280924 245__ $$aScanning Quantum Dot Microscopy
000280924 260__ $$aCollege Park, Md.$$bAPS$$c2015
000280924 3367_ $$2DRIVER$$aarticle
000280924 3367_ $$2DataCite$$aOutput Types/Journal article
000280924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502086328_15123
000280924 3367_ $$2BibTeX$$aARTICLE
000280924 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280924 3367_ $$00$$2EndNote$$aJournal Article
000280924 520__ $$aWe introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.
000280924 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280924 536__ $$0G:(DE-Juel1)hms17_20140501$$aSpectra of 2D layered materials (hms17_20140501)$$chms17_20140501$$fSpectra of 2D layered materials$$x1
000280924 588__ $$aDataset connected to CrossRef
000280924 7001_ $$0P:(DE-HGF)0$$aGreen, Matthew F. B.$$b1
000280924 7001_ $$0P:(DE-Juel1)164154$$aLeinen, Philipp$$b2
000280924 7001_ $$0P:(DE-HGF)0$$aDeilmann, Thorsten$$b3
000280924 7001_ $$0P:(DE-HGF)0$$aKrüger, Peter$$b4
000280924 7001_ $$0P:(DE-HGF)0$$aRohlfing, Michael$$b5
000280924 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b6$$eCorresponding author
000280924 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b7$$ufzj
000280924 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.026101$$gVol. 115, no. 2, p. 026101$$n2$$p026101$$tPhysical review letters$$v115$$x1079-7114$$y2015
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.pdf$$yOpenAccess
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.gif?subformat=icon$$xicon$$yOpenAccess
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280924 8564_ $$uhttps://juser.fz-juelich.de/record/280924/files/PhysRevLett.115.026101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280924 8767_ $$92015-05-13$$d2015-05-18$$eHybrid-OA$$jZahlung erfolgt
000280924 8767_ $$92015-05-13$$d2015-05-18$$eColour charges$$jZahlung erfolgt
000280924 909CO $$ooai:juser.fz-juelich.de:280924$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164154$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000280924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b7$$kFZJ
000280924 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280924 9141_ $$y2015
000280924 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000280924 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000280924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280924 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280924 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280924 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280924 920__ $$lyes
000280924 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280924 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280924 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000280924 9801_ $$aUNRESTRICTED
000280924 9801_ $$aFullTexts
000280924 980__ $$ajournal
000280924 980__ $$aVDB
000280924 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280924 980__ $$aI:(DE-82)080009_20140620
000280924 980__ $$aI:(DE-Juel1)NIC-20090406
000280924 980__ $$aUNRESTRICTED
000280924 980__ $$aAPC