000280946 001__ 280946 000280946 005__ 20210129221455.0 000280946 0247_ $$2doi$$a10.1007/s00138-015-0737-3 000280946 0247_ $$2ISSN$$a0932-8092 000280946 0247_ $$2ISSN$$a1432-1769 000280946 0247_ $$2WOS$$aWOS:000375611700012 000280946 0247_ $$2altmetric$$aaltmetric:5976975 000280946 037__ $$aFZJ-2016-00657 000280946 041__ $$aEnglish 000280946 082__ $$a004 000280946 1001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b0$$ufzj 000280946 245__ $$aLeaf segmentation in plant phenotyping: a collation study 000280946 260__ $$aBerlin$$bSpringer$$c2016 000280946 3367_ $$2DRIVER$$aarticle 000280946 3367_ $$2DataCite$$aOutput Types/Journal article 000280946 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485963251_20953 000280946 3367_ $$2BibTeX$$aARTICLE 000280946 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000280946 3367_ $$00$$2EndNote$$aJournal Article 000280946 520__ $$aImage-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in leaf shape and pose, as well as imaging conditions, render this problem challenging. The aim of this paper is to compare several leaf segmentation solutions on a unique and first-of-its-kind dataset containing images from typical phenotyping experiments. In particular, we report and discuss methods and findings of a collection of submissions for the first Leaf Segmentation Challenge of the Computer Vision Problems in Plant Phenotyping workshop in 2014. Four methods are presented: three segment leaves by processing the distance transform in an unsupervised fashion, and the other via optimal template selection and Chamfer matching. Overall, we find that although separating plant from background can be accomplished with satisfactory accuracy (>90 % Dice score), individual leaf segmentation and counting remain challenging when leaves overlap. Additionally, accuracy is lower for younger leaves. We find also that variability in datasets does affect outcomes. Our findings motivate further investigations and development of specialized algorithms for this particular application, and that challenges of this form are ideally suited for advancing the state of the art. Data are publicly available (online at http://www.plant-phenotyping.org/datasets) to support future challenges beyond segmentation within this application domain. 000280946 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000280946 536__ $$0G:(EU-Grant)247947$$aGARNICS - Gardening with a Cognitive System (247947)$$c247947$$fFP7-ICT-2009-4$$x1 000280946 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x2 000280946 588__ $$aDataset connected to CrossRef 000280946 7001_ $$0P:(DE-HGF)0$$aMinervini, Massimo$$b1$$eCorresponding author 000280946 7001_ $$0P:(DE-HGF)0$$aFrench, Andrew P.$$b2 000280946 7001_ $$0P:(DE-HGF)0$$aKlukas, Christian$$b3 000280946 7001_ $$0P:(DE-HGF)0$$aKramer, David M.$$b4 000280946 7001_ $$0P:(DE-HGF)0$$aLiu, Xiaoming$$b5 000280946 7001_ $$0P:(DE-HGF)0$$aLuengo, Imanol$$b6 000280946 7001_ $$0P:(DE-HGF)0$$aPape, Jean-Michel$$b7 000280946 7001_ $$0P:(DE-HGF)0$$aPolder, Gerrit$$b8 000280946 7001_ $$0P:(DE-HGF)0$$aVukadinovic, Danijela$$b9 000280946 7001_ $$0P:(DE-HGF)0$$aYin, Xi$$b10 000280946 7001_ $$0P:(DE-HGF)0$$aTsaftaris, Sotirios A.$$b11$$eCorresponding author 000280946 773__ $$0PERI:(DE-600)1481698-2$$a10.1007/s00138-015-0737-3$$n4$$p585-606$$tMachine vision and applications$$v27$$x1432-1769$$y2016 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.pdf$$yRestricted 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.gif?subformat=icon$$xicon$$yRestricted 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.jpg?subformat=icon-180$$xicon-180$$yRestricted 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.jpg?subformat=icon-640$$xicon-640$$yRestricted 000280946 8564_ $$uhttps://juser.fz-juelich.de/record/280946/files/art_10.1007_s00138-015-0737-3.pdf?subformat=pdfa$$xpdfa$$yRestricted 000280946 909CO $$ooai:juser.fz-juelich.de:280946$$pec_fundedresources$$pVDB$$popenaire 000280946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000280946 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000280946 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x1 000280946 9141_ $$y2016 000280946 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000280946 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000280946 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACH VISION APPL : 2014 000280946 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000280946 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000280946 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000280946 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000280946 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000280946 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000280946 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000280946 920__ $$lyes 000280946 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000280946 980__ $$ajournal 000280946 980__ $$aVDB 000280946 980__ $$aI:(DE-Juel1)IBG-2-20101118 000280946 980__ $$aUNRESTRICTED