Journal Article FZJ-2016-00657

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Leaf segmentation in plant phenotyping: a collation study

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Springer Berlin

Machine vision and applications 27(4), 585-606 () [10.1007/s00138-015-0737-3]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in leaf shape and pose, as well as imaging conditions, render this problem challenging. The aim of this paper is to compare several leaf segmentation solutions on a unique and first-of-its-kind dataset containing images from typical phenotyping experiments. In particular, we report and discuss methods and findings of a collection of submissions for the first Leaf Segmentation Challenge of the Computer Vision Problems in Plant Phenotyping workshop in 2014. Four methods are presented: three segment leaves by processing the distance transform in an unsupervised fashion, and the other via optimal template selection and Chamfer matching. Overall, we find that although separating plant from background can be accomplished with satisfactory accuracy (>90 % Dice score), individual leaf segmentation and counting remain challenging when leaves overlap. Additionally, accuracy is lower for younger leaves. We find also that variability in datasets does affect outcomes. Our findings motivate further investigations and development of specialized algorithms for this particular application, and that challenges of this form are ideally suited for advancing the state of the art. Data are publicly available (online at http://​www.​plant-phenotyping.​org/​datasets) to support future challenges beyond segmentation within this application domain.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)
  2. GARNICS - Gardening with a Cognitive System (247947) (247947)
  3. 583 - Innovative Synergisms (POF3-583) (POF3-583)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database

 Record created 2016-01-19, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)