Journal Article FZJ-2016-01606

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Time resolved imaging of laser induced ablation spectroscopy (LIAS) in TEXTOR and comparison with modeling

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
IoP Publ. Bristol

Physica scripta T167, 014034 - () [10.1088/0031-8949/T167/1/014034]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Laser based methods are investigated as in situ diagnostic for plasma facing materials (PFMs) in magnetic fusion research to study PFM composition and retention. In laser induced ablation spectroscopy (LIAS) the wall material is ablated by a laser beam. The released material enters the edge plasma region of a fusion experiment and the resulting optical emission is observed. To conclude from the observed photons to the number of ablated atoms, a detailed knowledge of the velocity distribution of the ablated material is required. In this work the LIAS emission in discharges at TEXTOR was studied using an Ametek Phantom v711 camera. In this paper a method is developed to conclude from the observed emission the velocity distribution of the ablated species. The obtained velocity distribution is used for our numerical LIAS model, demonstrating good agreement with our experimental observations. Implications are discussed.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Current Contents - Physical, Chemical and Earth Sciences ; National-Konsortium ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database

 Record created 2016-02-12, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)