Journal Article FZJ-2016-01619

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
N$_ {2}$O source partitioning in soils using $^{15}$ N site preference values corrected for the N$_ {2}$O reduction effect

 ;  ;  ;  ;  ;

2016
Wiley Interscience New York, NY

Rapid communications in mass spectrometry 30(5), 620 - 626 () [10.1002/rcm.7493]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: RationaleThe aim of this study was to determine the impact of isotope fractionation associated with N2O reduction during soil denitrification on N2O site preference (SP) values and hence quantify the potential bias on SP-based N2O source partitioning.MethodsThe N2O SP values (n = 431) were derived from six soil incubation studies in N2-free atmosphere, and determined by isotope ratio mass spectrometry (IRMS). The N2 and N2O concentrations were measured directly by gas chromatography. Net isotope effects (NIE) during N2O reduction to N2 were compensated for using three different approaches: a closed-system model, an open-system model and a dynamic apparent NIE function. The resulting SP values were used for N2O source partitioning based on a two end-member isotopic mass balance.ResultsThe average SP0 value, i.e. the average SP values of N2O prior to N2O reduction, was recalculated with the closed-system model, resulting in −2.6 ‰ (±9.5), while the open-system model and the dynamic apparent NIE model gave average SP0 values of 2.9 ‰ (±6.3) and 1.7 ‰ (±6.3), respectively. The average source contribution of N2O from nitrification/fungal denitrification was 18.7% (±21.0) according to the closed-system model, while the open-system model and the dynamic apparent NIE function resulted in values of 31.0% (±14.0) and 28.3% (±14.0), respectively.ConclusionsUsing a closed-system model with a fixed SP isotope effect may significantly overestimate the N2O reduction effect on SP values, especially when N2O reduction rates are high. This is probably due to soil inhomogeneity and can be compensated for by the application of a dynamic apparent NIE function, which takes the variable reduction rates in soil micropores into account

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2016-02-15, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)