000283561 001__ 283561
000283561 005__ 20210129222350.0
000283561 0247_ $$2doi$$a10.1016/j.expneurol.2016.02.018
000283561 0247_ $$2ISSN$$a0014-4886
000283561 0247_ $$2ISSN$$a1090-2430
000283561 0247_ $$2WOS$$aWOS:000374612900011
000283561 0247_ $$2altmetric$$aaltmetric:6029347
000283561 0247_ $$2pmid$$apmid:26923911
000283561 037__ $$aFZJ-2016-01876
000283561 041__ $$aEnglish
000283561 082__ $$a610
000283561 1001_ $$0P:(DE-HGF)0$$aBraun, Ramona$$b0
000283561 245__ $$aTranscranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke
000283561 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000283561 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457606203_9291
000283561 3367_ $$2DataCite$$aOutput Types/Journal article
000283561 3367_ $$00$$2EndNote$$aJournal Article
000283561 3367_ $$2BibTeX$$aARTICLE
000283561 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283561 3367_ $$2DRIVER$$aarticle
000283561 520__ $$aBackgroundClinical data suggest that transcranial direct current stimulation (tDCS) may be used to facilitate rehabilitation after stroke. However, data are inconsistent and the neurobiological mechanisms underlying tDCS remain poorly explored, impeding its implementation into clinical routine. In the healthy rat brain, tDCS affects neural stem cells (NSC) and microglia. We here investigated whether tDCS applied after stroke also beneficially affects these cells, which are known to be involved in regeneration and repair.MethodsFocal cerebral ischemia was induced in rats by transient occlusion of the middle cerebral artery. Twenty-eight animals with comparable infarcts, as judged by magnetic resonance imaging, were randomized to receive a multi-session paradigm of either cathodal, anodal, or sham tDCS. Behaviorally, recovery of motor function was assessed by Catwalk. Proliferation in the NSC niches was monitored by Positron-Emission-Tomography (PET) employing the radiotracer 3′-deoxy-3′-[18F]fluoro-l-thymidine ([18F]FLT). Microglia activation was depicted with [11C]PK11195-PET. In addition, immunohistochemical analyses were used to quantify neuroblasts, oligodendrocyte precursors, and activation and polarization of microglia.ResultsAnodal and cathodal tDCS both accelerated functional recovery, though affecting different aspects of motor function. Likewise, tDCS induced neurogenesis independently of polarity, while only cathodal tDCS recruited oligodendrocyte precursors towards the lesion. Moreover, cathodal stimulation preferably supported M1-polarization of microglia.ConclusionsTDCS acts through multifaceted mechanisms that far exceed its primary neurophysiological effects, encompassing proliferation and migration of stem cells, their neuronal differentiation, and modulation of microglia responses.
000283561 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000283561 588__ $$aDataset connected to CrossRef
000283561 7001_ $$0P:(DE-HGF)0$$aKlein, Rebecca$$b1
000283561 7001_ $$0P:(DE-HGF)0$$aWalter, Helene Luise$$b2
000283561 7001_ $$0P:(DE-HGF)0$$aOhren, Maurice$$b3
000283561 7001_ $$0P:(DE-HGF)0$$aFreudenmacher, Lars$$b4
000283561 7001_ $$0P:(DE-HGF)0$$aGetachew, Kaleab$$b5
000283561 7001_ $$0P:(DE-HGF)0$$aLadwig, Anne$$b6
000283561 7001_ $$0P:(DE-HGF)0$$aLuelling, Joachim$$b7
000283561 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8
000283561 7001_ $$0P:(DE-HGF)0$$aEndepols, Heike$$b9
000283561 7001_ $$0P:(DE-HGF)0$$aGraf, Rudolf$$b10
000283561 7001_ $$0P:(DE-HGF)0$$aHoehn, Mathias$$b11
000283561 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b12
000283561 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b13
000283561 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b14$$eCorresponding author
000283561 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2016.02.018$$gVol. 279, p. 127 - 136$$p127 - 136$$tExperimental neurology$$v279$$x0014-4886$$y2016
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.pdf$$yRestricted
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.gif?subformat=icon$$xicon$$yRestricted
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000283561 8564_ $$uhttps://juser.fz-juelich.de/record/283561/files/1-s2.0-S0014488616300401-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283561 909CO $$ooai:juser.fz-juelich.de:283561$$pVDB
000283561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000283561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000283561 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000283561 9141_ $$y2016
000283561 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000283561 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000283561 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2014
000283561 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000283561 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000283561 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000283561 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000283561 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000283561 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000283561 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000283561 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000283561 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000283561 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000283561 920__ $$lyes
000283561 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000283561 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000283561 980__ $$ajournal
000283561 980__ $$aVDB
000283561 980__ $$aUNRESTRICTED
000283561 980__ $$aI:(DE-Juel1)INM-3-20090406
000283561 980__ $$aI:(DE-Juel1)INM-5-20090406
000283561 981__ $$aI:(DE-Juel1)INM-5-20090406