001     30850
005     20200423203529.0
017 _ _ |a This version is available at the following Publisher URL: http://prl.aps.org
024 7 _ |a 10.1103/PhysRevLett.91.056103
|2 DOI
024 7 _ |a WOS:000184510600027
|2 WOS
024 7 _ |a 2128/2151
|2 Handle
037 _ _ |a PreJuSER-30850
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Busse, C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Stacking-Fault Nucleation on Ir(111)
260 _ _ |a College Park, Md.
|b APS
|c 2003
300 _ _ |a 0561031 - 0561034
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|v 91
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Variable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Polop, C.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Müller, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Albe, K.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Linke, U.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB23435
700 1 _ |a Michely, T.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1103/PhysRevLett.91.056103
|g Vol. 91, p. 0561031 - 0561034
|p 0561031 - 0561034
|q 91<0561031 - 0561034
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 91
|y 2003
|x 0031-9007
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.91.056103
|u http://hdl.handle.net/2128/2151
856 4 _ |u https://juser.fz-juelich.de/record/30850/files/29432.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:30850
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)29432
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21