001     32006
005     20200423203543.0
017 _ _ |a This version is available at the following Publisher URL: http://apl.aip.org
024 7 _ |a 10.1063/1.1541096
|2 DOI
024 7 _ |a WOS:000180687600040
|2 WOS
024 7 _ |a 2128/1239
|2 Handle
037 _ _ |a PreJuSER-32006
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Schroeder, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB3130
245 _ _ |a Leakage currents in high-permittivity thin films
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2003
300 _ _ |a 781
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|v 82
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Quite often leakage current data through high-permittivity thin films exhibit straight lines in the "Schottky" plot, i.e., log (current density j) versus sqrt (mean applied field), which suggests an electrode-limited current by field-enhanced thermionic emission. Unfortunately, the extracted permittivity at optical frequencies seldom is in agreement with experimental values and often is unacceptably small, i.e., <1. We suggest a model demonstrating that the leakage current in high-permittivity thin films is bulk-limited, but still is showing the characteristic dependence of thermionic emission. This is due to a combination of boundary conditions of the model, low-permittivity thin layers ("dead layer") at the electrodes and current injection/recombination terms at the injecting/collecting electrodes, respectively. (C) 2003 American Institute of Physics.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
536 _ _ |a Kondensierte Materie
|c M02
|0 G:(DE-Juel1)FUEK242
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Schmitz, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB15087
700 1 _ |a Meuffels, P.
|b 2
|u FZJ
|0 P:(DE-Juel1)130836
773 _ _ |a 10.1063/1.1541096
|g Vol. 82, p. 781
|p 781
|q 82<781
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 82
|y 2003
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.1541096
|u http://hdl.handle.net/2128/1239
856 4 _ |u https://juser.fz-juelich.de/record/32006/files/33425.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/32006/files/33425.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/32006/files/33425.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/32006/files/33425.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:32006
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 1
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-EKM
|l Elektrokeramische Materialien
|d 31.12.2003
|g IFF
|0 I:(DE-Juel1)VDB35
|x 0
970 _ _ |a VDB:(DE-Juel1)33425
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21