Journal Article PreJuSER-3548

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Bacteria Transport and Deposition under Unsaturated Flow Conditions: The Role of Water Content and Bacteria Surface Hydrophobicity

 ;  ;  ;  ;  ;

2008
SSSA Madison, Wis.

Vadose zone journal 7, 406 - 419 () [10.2136/vzj2007.0068]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Column experiments were conducted to investigate the transport and deposition behavior of representative hydrophobic and hydrophilic bacteria strains in sand at different water saturations. These strains are similar in surface charge, shape, and size, and differ primarily in their surface hydrophobicity and tendency to form aggregates. The amount of bacteria that were retained in the sand increased with decreasing water saturation, especially for the more hydrophobic strain that formed larger cell aggregates. Most of the cells were retained close to the column inlet, and the rate of deposition rapidly decreased with depth. The experimental data were analyzed using a mathematical model that accounted for deposition on two kinetic sites. Consideration of depth-dependent deposition in the model formulation significantly improved the description of the data, and the amount of cell retention was typically dominated by this site. The depth-dependent deposition coefficient tended to increase with decreasing water content, especially for the hydrophobic bacteria. Straining is believed to account for these observations because it increases in magnitude with increasing cell and aggregate size and when a greater fraction of the water flows through a larger number of small pore spaces with decreasing water content. Cell retention on the other kinetic deposition site was well described using a conventional model for attachment and detachment. Consistent with interaction energy calculations for bacteria attachment, however, low amounts of cell retention occurred on this site. Attempts to separately determine the amounts of attachment to solid-water and air-water interfaces were confounded by the influence of straining.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Research Program(s):
  1. Terrestrische Umwelt (P24)

Appears in the scientific report 2008
Notes: Nachtrag
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)