000040408 001__ 40408 000040408 005__ 20180210124538.0 000040408 0247_ $$2DOI$$a10.1016/j.susc.2004.12.028 000040408 0247_ $$2WOS$$aWOS:000227530600007 000040408 037__ $$aPreJuSER-40408 000040408 041__ $$aeng 000040408 082__ $$a540 000040408 084__ $$2WoS$$aChemistry, Physical 000040408 084__ $$2WoS$$aPhysics, Condensed Matter 000040408 1001_ $$0P:(DE-Juel1)VDB14465$$aRose, V.$$b0$$uFZJ 000040408 245__ $$aHigh temperature oxidation of CoAl(100) 000040408 260__ $$aAmsterdam$$bElsevier$$c2005 000040408 300__ $$a139 - 150 000040408 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000040408 3367_ $$2DataCite$$aOutput Types/Journal article 000040408 3367_ $$00$$2EndNote$$aJournal Article 000040408 3367_ $$2BibTeX$$aARTICLE 000040408 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000040408 3367_ $$2DRIVER$$aarticle 000040408 440_0 $$05673$$aSurface Science$$v577$$x0039-6028 000040408 500__ $$aRecord converted from VDB: 12.11.2012 000040408 520__ $$aWe have employed Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (EELS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to investigate the growth of an Al2O3 film on CoAl(1 0 0). While exposure to oxygen at room temperature leads to the formation of amorphous alumina, subsequent annealing at higher temperatures results in the growth of well-ordered theta-Al2O3. Well-ordered Al2O3 films are also formed by oxidation at temperatures of 800 K and above. The oxide is characterized by Fuchs-Kliewer modes at around 430, 630, 780 and 920 cm(-1). Oxide islands grow in two sets of domains perpendicular to each other. Under ultra-high vacuum conditions, self-limiting thickness of the oxide layer (9-10 Angstrom) has been found. The band gap of the theta-Al2O3 film on CoAl(1 0 0) is 4.3-4.5 eV. (C) 2005 Elsevier B.V. All rights reserved. 000040408 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0 000040408 588__ $$aDataset connected to Web of Science 000040408 650_7 $$2WoSType$$aJ 000040408 65320 $$2Author$$aAES 000040408 65320 $$2Author$$aLEED 000040408 65320 $$2Author$$aEELS 000040408 65320 $$2Author$$aSTM 000040408 65320 $$2Author$$aoxidation 000040408 65320 $$2Author$$acobalt 000040408 65320 $$2Author$$aaluminum 000040408 65320 $$2Author$$aalumina 000040408 7001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b1$$uFZJ 000040408 7001_ $$0P:(DE-Juel1)VDB41356$$aPodgursky, V.$$b2$$uFZJ 000040408 7001_ $$0P:(DE-HGF)0$$aCostina, I.$$b3 000040408 7001_ $$0P:(DE-Juel1)VDB5400$$aFranchy, R.$$b4$$uFZJ 000040408 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2004.12.028$$gVol. 577, p. 139 - 150$$p139 - 150$$q577<139 - 150$$tSurface science$$v577$$x0039-6028$$y2005 000040408 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2004.12.028 000040408 909CO $$ooai:juser.fz-juelich.de:40408$$pVDB 000040408 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0 000040408 9141_ $$y2005 000040408 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000040408 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0 000040408 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381 000040408 970__ $$aVDB:(DE-Juel1)54146 000040408 980__ $$aVDB 000040408 980__ $$aConvertedRecord 000040408 980__ $$ajournal 000040408 980__ $$aI:(DE-Juel1)PGI-3-20110106 000040408 980__ $$aI:(DE-Juel1)VDB381 000040408 980__ $$aUNRESTRICTED 000040408 981__ $$aI:(DE-Juel1)PGI-3-20110106 000040408 981__ $$aI:(DE-Juel1)VDB381