000043108 001__ 43108
000043108 005__ 20180210134013.0
000043108 0247_ $$2DOI$$a10.1016/S0955-2219(03)00573-9
000043108 0247_ $$2WOS$$aWOS:000189247800113
000043108 037__ $$aPreJuSER-43108
000043108 041__ $$aeng
000043108 082__ $$a660
000043108 084__ $$2WoS$$aMaterials Science, Ceramics
000043108 1001_ $$0P:(DE-HGF)0$$aHofer, C.$$b0
000043108 245__ $$aCharacterization of Ba(Ti,Zr)O3 ceramics sintered under reducing conditions
000043108 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2004
000043108 300__ $$a1473 - 1477
000043108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000043108 3367_ $$2DataCite$$aOutput Types/Journal article
000043108 3367_ $$00$$2EndNote$$aJournal Article
000043108 3367_ $$2BibTeX$$aARTICLE
000043108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000043108 3367_ $$2DRIVER$$aarticle
000043108 440_0 $$03891$$aJournal of the European Ceramic Society$$v24$$x0955-2219
000043108 500__ $$aRecord converted from VDB: 12.11.2012
000043108 520__ $$aOver the past few years, lead-free relaxor dielectrics have become particularly interesting for industrial applications. Due to the use of low cost base metal electrodes (BME), reductive sample sintering is required. This contribution refers to the influence of reducing sintering atmospheres on the dielectric behaviour of Mn-doped Ba(TixZr1-x)O-3 ceramics with different Zr-contents (x = 0-100 at.%). It was studied by impedance spectroscopy in the temperature range T = -150-300 degreesC and the frequency range f= 5 mHz-10 MHz. For the interpretation of the impedance spectra we used an equivalent electrical circuit to separate bulk from grain boundary or electrode contributions, respectively. It was found that reductive sintering decreases the maximum dielectric constant by approx. 20%. Further, a T-Curie, shift towards lower temperatures was observed, In contrast to materials sintered under oxidizing conditions, reduced sintered samples showed a plateau in the T-Curie versus Zr-content plot, derived from the Curie-Weiss behavior of the bulk in the cubic phase. (C) 2003 Elsevier Ltd. All rights reserved.
000043108 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000043108 588__ $$aDataset connected to Web of Science
000043108 650_7 $$2WoSType$$aJ
000043108 65320 $$2Author$$aBaTiO3 and titanates
000043108 65320 $$2Author$$aelectrical properties
000043108 65320 $$2Author$$aimpedance
000043108 65320 $$2Author$$aperovskites
000043108 65320 $$2Author$$arelaxor
000043108 7001_ $$0P:(DE-Juel1)VDB5958$$aMeyer, R.$$b1$$uFZJ
000043108 7001_ $$0P:(DE-HGF)0$$aBöttger, U.$$b2
000043108 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000043108 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/S0955-2219(03)00573-9$$gVol. 24, p. 1473 - 1477$$p1473 - 1477$$q24<1473 - 1477$$tJournal of the European Ceramic Society$$v24$$x0955-2219$$y2004
000043108 8567_ $$uhttp://dx.doi.org/10.1016/S0955-2219(03)00573-9
000043108 909CO $$ooai:juser.fz-juelich.de:43108$$pVDB
000043108 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000043108 9141_ $$y2004
000043108 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000043108 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x0
000043108 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000043108 970__ $$aVDB:(DE-Juel1)60277
000043108 980__ $$aVDB
000043108 980__ $$aConvertedRecord
000043108 980__ $$ajournal
000043108 980__ $$aI:(DE-Juel1)PGI-7-20110106
000043108 980__ $$aI:(DE-Juel1)VDB381
000043108 980__ $$aUNRESTRICTED
000043108 981__ $$aI:(DE-Juel1)PGI-7-20110106
000043108 981__ $$aI:(DE-Juel1)VDB381