000045273 001__ 45273
000045273 005__ 20240610120317.0
000045273 0247_ $$2DOI$$a10.1209/epl/i2002-00606-0
000045273 0247_ $$2WOS$$aWOS:000174756300010
000045273 0247_ $$2ISSN$$a0295-5075
000045273 037__ $$aPreJuSER-45273
000045273 041__ $$aeng
000045273 082__ $$a530
000045273 084__ $$2WoS$$aPhysics, Multidisciplinary
000045273 1001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b0$$uFZJ
000045273 245__ $$aThe freezing transition of flexible membranes
000045273 260__ $$aLes Ulis$$bEDP Sciences$$c2002
000045273 300__ $$a60 - 66
000045273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000045273 3367_ $$2DataCite$$aOutput Types/Journal article
000045273 3367_ $$00$$2EndNote$$aJournal Article
000045273 3367_ $$2BibTeX$$aARTICLE
000045273 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000045273 3367_ $$2DRIVER$$aarticle
000045273 440_0 $$01996$$aEurophysics Letters$$v58$$x0295-5075$$y1
000045273 500__ $$aRecord converted from VDB: 12.11.2012
000045273 520__ $$aThe freezing transition of a network model for flexible tensionless membranes fluctuating about a planar reference state is investigated by Monte Carlo simulations and scaling arguments. The bond-orientational order parameter susceptibility is analyzed for three values of the bending rigidity kappa, and it is found that for sufficiently large kappa the low-temperature hexatic phase melts via a universal Kosterlitz-Thouless transition. These results are consistent with recent theoretical predictions that the crumpled-to-crinkled transition occurs via disclination melting for all bending rigidities and tether lengths. However, our simulations provide evidence that the transition becomes first order at very low bending rigidity.
000045273 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000045273 588__ $$aDataset connected to Web of Science
000045273 650_7 $$2WoSType$$aJ
000045273 7001_ $$0P:(DE-Juel1)VDB2438$$aKroll, D. M.$$b1$$uFZJ
000045273 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/epl/i2002-00606-0$$gVol. 58, p. 60 - 66$$p60 - 66$$q58<60 - 66$$tepl$$v58$$x0295-5075$$y2002
000045273 909CO $$ooai:juser.fz-juelich.de:45273$$pVDB
000045273 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000045273 9141_ $$y2002
000045273 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000045273 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000045273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000045273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000045273 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000045273 970__ $$aVDB:(DE-Juel1)6831
000045273 980__ $$aVDB
000045273 980__ $$aConvertedRecord
000045273 980__ $$ajournal
000045273 980__ $$aI:(DE-Juel1)ICS-2-20110106
000045273 980__ $$aUNRESTRICTED
000045273 981__ $$aI:(DE-Juel1)IBI-5-20200312
000045273 981__ $$aI:(DE-Juel1)IAS-2-20090406
000045273 981__ $$aI:(DE-Juel1)ICS-2-20110106