000045273 001__ 45273 000045273 005__ 20240610120317.0 000045273 0247_ $$2DOI$$a10.1209/epl/i2002-00606-0 000045273 0247_ $$2WOS$$aWOS:000174756300010 000045273 0247_ $$2ISSN$$a0295-5075 000045273 037__ $$aPreJuSER-45273 000045273 041__ $$aeng 000045273 082__ $$a530 000045273 084__ $$2WoS$$aPhysics, Multidisciplinary 000045273 1001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b0$$uFZJ 000045273 245__ $$aThe freezing transition of flexible membranes 000045273 260__ $$aLes Ulis$$bEDP Sciences$$c2002 000045273 300__ $$a60 - 66 000045273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000045273 3367_ $$2DataCite$$aOutput Types/Journal article 000045273 3367_ $$00$$2EndNote$$aJournal Article 000045273 3367_ $$2BibTeX$$aARTICLE 000045273 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000045273 3367_ $$2DRIVER$$aarticle 000045273 440_0 $$01996$$aEurophysics Letters$$v58$$x0295-5075$$y1 000045273 500__ $$aRecord converted from VDB: 12.11.2012 000045273 520__ $$aThe freezing transition of a network model for flexible tensionless membranes fluctuating about a planar reference state is investigated by Monte Carlo simulations and scaling arguments. The bond-orientational order parameter susceptibility is analyzed for three values of the bending rigidity kappa, and it is found that for sufficiently large kappa the low-temperature hexatic phase melts via a universal Kosterlitz-Thouless transition. These results are consistent with recent theoretical predictions that the crumpled-to-crinkled transition occurs via disclination melting for all bending rigidities and tether lengths. However, our simulations provide evidence that the transition becomes first order at very low bending rigidity. 000045273 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000045273 588__ $$aDataset connected to Web of Science 000045273 650_7 $$2WoSType$$aJ 000045273 7001_ $$0P:(DE-Juel1)VDB2438$$aKroll, D. M.$$b1$$uFZJ 000045273 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/epl/i2002-00606-0$$gVol. 58, p. 60 - 66$$p60 - 66$$q58<60 - 66$$tepl$$v58$$x0295-5075$$y2002 000045273 909CO $$ooai:juser.fz-juelich.de:45273$$pVDB 000045273 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000045273 9141_ $$y2002 000045273 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review 000045273 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000045273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000045273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000045273 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0 000045273 970__ $$aVDB:(DE-Juel1)6831 000045273 980__ $$aVDB 000045273 980__ $$aConvertedRecord 000045273 980__ $$ajournal 000045273 980__ $$aI:(DE-Juel1)ICS-2-20110106 000045273 980__ $$aUNRESTRICTED 000045273 981__ $$aI:(DE-Juel1)IBI-5-20200312 000045273 981__ $$aI:(DE-Juel1)IAS-2-20090406 000045273 981__ $$aI:(DE-Juel1)ICS-2-20110106