001     45609
005     20200423204121.0
017 _ _ |a This version is available at the following Publisher URL: http://apl.aip.org
024 7 _ |a 10.1063/1.1874313
|2 DOI
024 7 _ |a WOS:000228050700074
|2 WOS
024 7 _ |a 2128/1001
|2 Handle
037 _ _ |a PreJuSER-45609
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Meyer, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5958
245 _ _ |a Oxygen vacancy migration and time-dependent leakage current behavior of Ba0.3Sr0.7TiO3 thin films
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2005
300 _ _ |a 112904
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|v 86
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The leakage current response of high-permittivity columnar-grown (Ba,Sr)TiO3 thin films has been studied at elevated temperatures under dc load. We observe a thermally activated current prior to the onset of the resistance degradation with an activation energy of E-A=1.1 eV. A point defect model is applied to calculate the migration of electronic and ionic defects under the dc field as well as the current response of the system. We find that the peak in current is not caused by a space-charge-limited transient of oxygen vacancies, but related to a modulation of the electronic conductivity upon oxygen vacancy redistribution. Furthermore, we show that after the redistribution of electronic and ionic defects, no further increase in conductivity takes place in the simulation. (C) 2005 American Institute of Physics.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Liedtke, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB6943
700 1 _ |a Waser, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1063/1.1874313
|g Vol. 86, p. 112904
|p 112904
|q 86<112904
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 86
|y 2005
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.1874313
|u http://hdl.handle.net/2128/1001
856 4 _ |u https://juser.fz-juelich.de/record/45609/files/69987.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45609/files/69987.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45609/files/69987.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/45609/files/69987.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:45609
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)69987
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21