000045672 001__ 45672
000045672 005__ 20240610120336.0
000045672 0247_ $$2DOI$$a10.1209/epl/i2004-10464-2
000045672 0247_ $$2WOS$$aWOS:000228627400021
000045672 0247_ $$2ISSN$$a0295-5075
000045672 037__ $$aPreJuSER-45672
000045672 041__ $$aeng
000045672 082__ $$a530
000045672 084__ $$2WoS$$aPhysics, Multidisciplinary
000045672 1001_ $$0P:(DE-Juel1)VDB1458$$aSchneider, S.$$b0$$uFZJ
000045672 245__ $$aShapes of crystalline domains on spherical fluid vesicles
000045672 260__ $$aLes Ulis$$bEDP Sciences$$c2005
000045672 300__ $$a136 - 142
000045672 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000045672 3367_ $$2DataCite$$aOutput Types/Journal article
000045672 3367_ $$00$$2EndNote$$aJournal Article
000045672 3367_ $$2BibTeX$$aARTICLE
000045672 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000045672 3367_ $$2DRIVER$$aarticle
000045672 440_0 $$01996$$aEurophysics Letters$$v70$$x0295-5075
000045672 500__ $$aRecord converted from VDB: 12.11.2012
000045672 520__ $$aThe energies of crystalline domains of different shapes on a spherical surface are calculated using continuum elasticity theory and simulations. Additivity of the stretching energy and the line energy is assumed, and a phase diagram is constructed considering discs/caps, rings, and ribbons of the defect-free crystal as well as discs/caps with a 5-fold disclination at their center. The shapes and the number of the crystalline domains are found to depend only on the relative area covered by the domains and the ratio of the reduced line tension and the reduced Young modulus. The results are expected to be relevant for systems like two-dimensional colloidal crystals on emulsion droplets or lipid-bilayer vesicles in the two-phase region.
000045672 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000045672 588__ $$aDataset connected to Web of Science
000045672 650_7 $$2WoSType$$aJ
000045672 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000045672 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/epl/i2004-10464-2$$gVol. 70, p. 136 - 142$$p136 - 142$$q70<136 - 142$$tepl$$v70$$x0295-5075$$y2005
000045672 8567_ $$uhttp://dx.doi.org/10.1209/epl/i2004-10464-2
000045672 909CO $$ooai:juser.fz-juelich.de:45672$$pVDB
000045672 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000045672 9141_ $$y2005
000045672 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000045672 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000045672 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000045672 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000045672 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000045672 970__ $$aVDB:(DE-Juel1)70287
000045672 980__ $$aVDB
000045672 980__ $$aConvertedRecord
000045672 980__ $$ajournal
000045672 980__ $$aI:(DE-Juel1)ICS-2-20110106
000045672 980__ $$aUNRESTRICTED
000045672 981__ $$aI:(DE-Juel1)IBI-5-20200312
000045672 981__ $$aI:(DE-Juel1)IAS-2-20090406
000045672 981__ $$aI:(DE-Juel1)ICS-2-20110106