000045672 001__ 45672 000045672 005__ 20240610120336.0 000045672 0247_ $$2DOI$$a10.1209/epl/i2004-10464-2 000045672 0247_ $$2WOS$$aWOS:000228627400021 000045672 0247_ $$2ISSN$$a0295-5075 000045672 037__ $$aPreJuSER-45672 000045672 041__ $$aeng 000045672 082__ $$a530 000045672 084__ $$2WoS$$aPhysics, Multidisciplinary 000045672 1001_ $$0P:(DE-Juel1)VDB1458$$aSchneider, S.$$b0$$uFZJ 000045672 245__ $$aShapes of crystalline domains on spherical fluid vesicles 000045672 260__ $$aLes Ulis$$bEDP Sciences$$c2005 000045672 300__ $$a136 - 142 000045672 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000045672 3367_ $$2DataCite$$aOutput Types/Journal article 000045672 3367_ $$00$$2EndNote$$aJournal Article 000045672 3367_ $$2BibTeX$$aARTICLE 000045672 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000045672 3367_ $$2DRIVER$$aarticle 000045672 440_0 $$01996$$aEurophysics Letters$$v70$$x0295-5075 000045672 500__ $$aRecord converted from VDB: 12.11.2012 000045672 520__ $$aThe energies of crystalline domains of different shapes on a spherical surface are calculated using continuum elasticity theory and simulations. Additivity of the stretching energy and the line energy is assumed, and a phase diagram is constructed considering discs/caps, rings, and ribbons of the defect-free crystal as well as discs/caps with a 5-fold disclination at their center. The shapes and the number of the crystalline domains are found to depend only on the relative area covered by the domains and the ratio of the reduced line tension and the reduced Young modulus. The results are expected to be relevant for systems like two-dimensional colloidal crystals on emulsion droplets or lipid-bilayer vesicles in the two-phase region. 000045672 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000045672 588__ $$aDataset connected to Web of Science 000045672 650_7 $$2WoSType$$aJ 000045672 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000045672 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/epl/i2004-10464-2$$gVol. 70, p. 136 - 142$$p136 - 142$$q70<136 - 142$$tepl$$v70$$x0295-5075$$y2005 000045672 8567_ $$uhttp://dx.doi.org/10.1209/epl/i2004-10464-2 000045672 909CO $$ooai:juser.fz-juelich.de:45672$$pVDB 000045672 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000045672 9141_ $$y2005 000045672 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review 000045672 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000045672 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000045672 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000045672 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0 000045672 970__ $$aVDB:(DE-Juel1)70287 000045672 980__ $$aVDB 000045672 980__ $$aConvertedRecord 000045672 980__ $$ajournal 000045672 980__ $$aI:(DE-Juel1)ICS-2-20110106 000045672 980__ $$aUNRESTRICTED 000045672 981__ $$aI:(DE-Juel1)IBI-5-20200312 000045672 981__ $$aI:(DE-Juel1)IAS-2-20090406 000045672 981__ $$aI:(DE-Juel1)ICS-2-20110106