001     4668
005     20180208215643.0
024 7 _ |2 DOI
|a 10.1016/j.mee.2009.01.010
024 7 _ |2 WOS
|a WOS:000267273300156
037 _ _ |a PreJuSER-4668
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Optics
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Soni, R.
|0 P:(DE-Juel1)VDB75717
|b 0
|u FZJ
245 _ _ |a Integration of \"GexSe1-x\" in crossbar arrays for non-volatile memory applications
260 _ _ |a [S.l.] @
|b Elsevier
|c 2009
300 _ _ |a 1054 - 1056
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microelectronic Engineering
|x 0167-9317
|0 4347
|v 86
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a This work presents the characterization of crossbar arrays and cross-point structures with Cu containing Ge0.3Se0.7 and SiOx buffer layer stack as an active material sandwiched between an inert Pt bottom and an oxidizable Cu top electrode. Essential characteristics for the future non-volatile memories including high R-off/R-on ratio of similar to 10(4) high retention ability at elevated temperature and sufficient endurance up to 5 x 10(3) cycles are presented. The possibility to write the memory cells with few nA is promising for low power consumption applications. (C) 2009 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Memory
653 2 0 |2 Author
|a Crossbar
653 2 0 |2 Author
|a Chalcogenide
700 1 _ |a Meier, M.
|0 P:(DE-Juel1)VDB55622
|b 1
|u FZJ
700 1 _ |a Rüdiger, A.
|0 P:(DE-Juel1)VDB26957
|b 2
|u FZJ
700 1 _ |a Holländer, B.
|0 P:(DE-Juel1)125595
|b 3
|u FZJ
700 1 _ |a Kügeler, C.
|0 P:(DE-Juel1)VDB15125
|b 4
|u FZJ
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
|u FZJ
773 _ _ |a 10.1016/j.mee.2009.01.010
|g Vol. 86, p. 1054 - 1056
|p 1054 - 1056
|q 86<1054 - 1056
|0 PERI:(DE-600)1497065-x
|t Microelectronic engineering
|v 86
|y 2009
|x 0167-9317
856 7 _ |u http://dx.doi.org/10.1016/j.mee.2009.01.010
909 C O |o oai:juser.fz-juelich.de:4668
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)111849
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21