000048169 001__ 48169 000048169 005__ 20180210132520.0 000048169 0247_ $$2DOI$$a10.1007/s10973-005-0917-x 000048169 0247_ $$2WOS$$aWOS:000233043700025 000048169 0247_ $$2ISSN$$a1572-8943 000048169 037__ $$aPreJuSER-48169 000048169 041__ $$aeng 000048169 082__ $$a660 000048169 084__ $$2WoS$$aChemistry, Analytical 000048169 084__ $$2WoS$$aChemistry, Physical 000048169 1001_ $$0P:(DE-HGF)0$$aOszlanczi, A.$$b0 000048169 245__ $$aEffects of Sulfadiazine on Biological Model Membranes 000048169 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2005 000048169 300__ $$a457 - 462 000048169 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000048169 3367_ $$2DataCite$$aOutput Types/Journal article 000048169 3367_ $$00$$2EndNote$$aJournal Article 000048169 3367_ $$2BibTeX$$aARTICLE 000048169 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000048169 3367_ $$2DRIVER$$aarticle 000048169 440_0 $$08101$$aJournal of Thermal Analysis and Calorimetry$$v82$$x1388-6150$$y2 000048169 500__ $$aRecord converted from VDB: 12.11.2012 000048169 520__ $$aThe effect of sulfadiazine on dipalmitoylphosphatidylethanolamin-dipalmitoylphosphatidylglycerol-water (DPPE-DPPG/water, 20 mass/ mass%, with 0.2 DPPG/DPPE+DPPG molar ratio) vesicles considered as a model system of the cytoplasmic bacterial membranes was studied using DSC and freeze-fracture methods. The sulfadiazine/ lipid molar ratio was varied from 10(-3) up to 1. It was found that the DPPE-DPPG/water system is drastically affected by the sulfadiazine, but there is no concentration effect in a wide range of sulfadiazine/ lipid molar ratios from 10(-2) up to 2 center dot 10(-1). The DSC and freeze-fracture methods reveal that a homogeneous incorporation of the sulfadiazine molecules occurs in the liquid crystalline phase while in the gel phase separation appears. The different local structures can be classified into two different types: vesicle-like and block-type. Although the surface morphology of the domains of both types shows lamellar arrangement, the blocks are constituted from closely packed long units. 000048169 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0 000048169 588__ $$aDataset connected to Web of Science 000048169 650_7 $$2WoSType$$aJ 000048169 65320 $$2Author$$aDPPE-DPPG vesicles 000048169 65320 $$2Author$$aDSC 000048169 65320 $$2Author$$afreeze-fracture 000048169 65320 $$2Author$$aphase separation 000048169 65320 $$2Author$$asulfadiazine 000048169 7001_ $$0P:(DE-HGF)0$$aNovak, Cs.$$b1 000048169 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b2$$uFZJ 000048169 773__ $$0PERI:(DE-600)2017304-0$$a10.1007/s10973-005-0917-x$$gVol. 82, p. 457 - 462$$p457 - 462$$q82<457 - 462$$tJournal of Thermal Analysis and Calorimetry$$v82$$x1388-6150$$y2005 000048169 8567_ $$uhttp://dx.doi.org/10.1007/s10973-005-0917-x 000048169 909CO $$ooai:juser.fz-juelich.de:48169$$pVDB 000048169 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0 000048169 9141_ $$y2005 000048169 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000048169 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000048169 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000048169 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000048169 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0 000048169 970__ $$aVDB:(DE-Juel1)75842 000048169 980__ $$aVDB 000048169 980__ $$aConvertedRecord 000048169 980__ $$ajournal 000048169 980__ $$aI:(DE-Juel1)IBG-3-20101118 000048169 980__ $$aUNRESTRICTED 000048169 981__ $$aI:(DE-Juel1)IBG-3-20101118